Economic Adjustment Strategy for the Oregon Fishing Industry

Feasibility Review
of
Increasing Abundance and Harvest of Chinook Salmon In Oregon Offshore Fishery

Prepared by
Oregon Coastal Zone Management Association, Inc.
Oregon Fishing Industry Project
Judith St. Claire, Project Director
P.O. Box 1033

Newport, Oregon 97365
(503) 265-8918

September, 1985

Economic Portion of Study Completed by Hans Radtke, Freelance Economist

The Oregon Salmon Commission
contributed financially to the preparation of this report
hebngtam of The mbun

A Freliminary Feasibility Review of lncreasing The Abundances and Harvest of Chinoot: Salmon in The Oregon Offehore Fishery
a study by
H. S. Egna
and
JaE. Lannam
for
The Oregon Coastal Zone Management Associationg Inc. Oregon Fisting Industry Froject

313 SW 2nd
Newport, Oregon 97E6:

[^0]1

1

1

1

1

1

1

$1:$

1

1

EXECUTIVE SUMMARY

The purpose of this study is to provide a literature review of avalable information pertaining to the feasibility of increasing the oregon offshore harvest of chinook salmon. The status of the Oregon coastal chimook stocts is evaluated with respect to abundance, offshore contribution, migratory patterns, and disease problems. This information provides preliminary guidelines for determining which stoeks are potential candidates for transfer or enhancement. After this initial screening, a finel qualitative evaluation of the etocts is made with regard to the impacts of introdumtions on native fish and the genetice risks involved in a reprogramming or enhancement effort. Reprogramming refers to transferring hatwhery fish and enhancement refers to increasing the number of hatchery fish released.

The Oregon coastal chinook stocks that tend to contribute heavily to the Dregon offshore fishery are the southern stocks: the Umpqua spring, the Fogue spring and fall, the Chetco fall, and the Elt fall chinook. The contribution of the EIf stocks to the Oregon fishery may be due in part to the extended troll fishery that operates off the Elf: Fivern Fish from the southern stocks generally are not as highly migratory as the northern coastal chinook and are believed to remain in local waters (Oregon and California) for most of their ocean life history. The escapement of the southern coastal stocks has been depressed in the past few years: there is speculation that this was caused by the warm ocean currents of the El Nino. Historically, the size of the runs from the southern coastal streans probably was comparable to that of the northern streams. Fecent catch and escapement data indicate that the southern stocts are recovering: however, limited information on the long term status of these stocks makes it difficult to assess the present health of the rescource.

Oregon Department of fish and Wildlife policy prohibits the transfer of two southern coastal stocks to other systemm. The Chetco and Elt fall chinook have been quarantined tue to the Infectious Hematopoietic Necrosis Virus (IHNV). Recently, this virus was isolated from upriver bright chinook in the Columbia River, resulting in the destruction of millions of eggs at the Eonneville hatchery. Chinook from the Columbia-Willamette Basin canot be trensferred to any Oregon coastal hatwheries. The developinent of an JHN-mee stock is not expected in the near future and there is presentiy no treatment (eng. vaccine) for the virus.

The life history strategies of the various coastel stocts provide information that is curitical to the outcome of a reprogramming effort. The life history of introduced stocks ghould be wompatible with the new enviromment: to which they are transferredn Variations in woleramee levels to figh temperatures, 1 ow river flows, and diseases as well as differences in the timing of migretion to the ofeang frestmater and esturry residence times and run timing could lead to fajlume of the traneplanted fish to gurviven

Interactions between hatchery and wild fish form the basis of woncern atout the genetic risks associated with transferring fish. The impact of hatchery strays (adults and juvenj les) canmot be amalyaed directuy: however, there is evidemme that negative intemectioms can result in the reduced production (i.en survival and growth) of wild fish. Eeneficial and meutral "impacts" are also possibley but in order to manage the resource womesmvatively, it is recommended that the possible negative impacts be avoided. Hatchery management practices, hatchery location (eng. proximity to the coast), the density of widd fis sh (and their "fitmess") in the streams, and fish behavior are some factors that might influence the extent of the negative impacts.

The carrying capacity of the ocean does not appear to I imit the production of chimook. Fill chimook stocks have been increasing at a rate of about e\% per year since 1950 . AIthough this trend has solowed in recent years, the overall health of the resource appears to be good. Densitydependent mechanisms might occur in streams where rearing, gpawning, and overwintering habitats are limited. Methode exist for examining the farrying capacity of eonstal streams (and optimum stocking rates) however, the afficacy of these methods is restricted by the in mitations of the present information basen Because of these limitations, recommendations for" a "safe level of increased releases" could not: be made. The 3 sue of allocetion feld subject to a similar fate.

In monciusion, this report presents areview of important aspects of the comstal chinook resource that need to be considered in future feesibility studies. Further study is recommended before reprogramming or enhancement efforts are initiated. More emphasis should be placed on the design of contribution experiments and the analysis of data pertaiming to abundancey ocean contributiong, distribution, and life history strategies of Oregon moastal chinoot: sel mom.

TABLE OF CONTENTS

Qage
Titwepage i.
ExECutivéwnmmiy i 1.
Table of Contents $i v$
Ljetwof Figures and Tables vij.
Abswract x
Inturoduction 1
scope of study 1
Awknow 1 edgement: 2
Fart In The Etatus of Oregon Coastal Chinoot gtocks
Gerafer $\underset{ }{3}$
Contributiom of Oregon Comen Chinoot to the Oregon oftshore fishery ?
Jiterature Fieview of Taggimg and Markimg Studies,
Historicol Taggimg and Marking Stucdjes. r
Limjtations of the early Tagaing and
Marting studies 4
Fin Mart Experimenten 196 to 197% E
Limitations of Markimg ExMEriments. 6
Foded Wire Tag (CWT) Studies 6
Limitations of Goded Wire Tag
Studies and EEtimates. θ
Gther Studies and Methoos That May Ee Ueed In Determining Comtributiom. 9
Suala madysis 9
E\# lectrophoresis 10
Acoustic Taggimg 10
Evelumtion of Long Term Fatterme of Comtributiom 10Constradnts on combining eardier studies withI ater studies10
General Fatterns of Gontribution. 11.Gummary of timdimge om the womtribution of various

and Fivers 12
High Seas Feleese mad Fecovery lnformetiomn 12
Miguatory sehavior of Ehimook salmorn in the
North Fewific Ocean 14
Vertical distributiom of eminook salmom 1%
Abundarme wf Chimoot sejmon in the Oregon Coestaj streams 16
Abumdance of Neturel Spewners 16
Fumctrard estimaties 1%
Dem 6oumts 17
 17
Sacwnimg \％is sly murveys 18
Ot与er sonures of iriformetam 19
Releases of Chirmot：wamon from woastal hatotariess 19
 20
Non－virad diseases 玉
Virm dimeases 0
Fart II．Impects of Introduced Stock on Native Gtoces． 2
Introoductiom е
Interactions between win a and hatchery fish 2．
Genetice Comsiderations． 2
Maptative differences of hatelnery and wild fish 玉
Gurvival．of hetwmery anc wild fish 2
The fitness of wido anch hewhery fish 24
gome genetic comrerme 5
Development of a＂swperstowt＂：concerns 26
Eehavioral interewtions of native and hatwhery fich． 27
L．ife History Stretegies 28
Juvenile mトinook from Oregom＂oastel streems ． 6
EEtuarime Faering 2e
Migretiom to the estuaty 2 e
Wigretion to the oweam 27
Verietions in tolerance levels of verions wtocks． 29
Acult chanoot： 27
Fum timimg． 29
Maturation rates and externel charawteristic： \％
Age at returm． 0
Carrying wapacjty and density dependence conmjderations 30
 Gregon Coastal Streams 2
Concerme Fegardimg Feprogramming effomtsn 34
Coneerns Fegarding Enhamcement efforts 34
 WE
Increasing the release of southern momstal stocks 36
Summary of gemeral woncemrs governimg emtiancement： 36
Conclusions 38
syfots aut to snteas atenteva of pem equa mey "o xppuadty

List of Acronyms and Abbreviations

AK:	Alasta
EGD	Bacterial Gill Disease
EC	Eritish Columbia
EkS	Eacterial Kidney Disease
EY	Erood Year
CA	California
CFUE	Catch Fer Unit Effort
CWD	Cold Water Disease
CWT	Coded Wire Tag
ICH	Ichthyophthirius
IHN	Infectious Hematopoietic Necrosis
IHNV	Infectious Hematopoietic Necrosis Virus
INFFC	International North Facific Fisheries Commission
IFN	Infectious Fancreatic Necrosis
ODFW	Oregon Department of Fish and Wildife
OFI	Oregon Frroduction Inder:
OR	Oregon
OSU	Oregon State University
FMFC	Facific Marine Fisheries Commission
STEF	Salmon and Trout Enhancement Frogram
VEN	Viral Erythrocytic Necrosis
WA	Washington

Fig gure lu Feak Coumts of Fish per mite on selected mpawninc gurvey inclex streems.

 Biver and the wimohester Dann Umpqua Fivern

「able 2n Fough estimate mf averngermmber or naturad. gpawners, 1976 to 1904.
 of Oregon Comstal Stocks, 1979 to 198.
 Erood Years 197\% and 1974.

Appendir An Status of the Oregon Coastal Chinool: Stoct: an
A-1: Historical Martimg and Taggirig Studies.
A-2. Esctimated mean sumvival to cetoh for Oregom Froduction Arees.

A-s, Spawning Surveys for Oregon Coastal Fall Clinoom:

A-4n Ewtimeted contributiom of some woastal Ghinook: stoctis.

A-En Frejumimary Evaluation of lomg term torends in wonteribution to the Gregom offshore ix whery or Uregon comstal ©hinook stocks, by watersmed or locelity.

A-6n Historicam estimates of the Commerciayd Harvest of Chinook in Oregom.

A-7. Estimated Hatchery relemges of chinool: from Oregon Coastal streans, for 1985 rind 1986.

A-B. Summary of disemses by hatchery.
A-9. Susceptibility of Facific Salmonict to IHN virus.

Appemdix E. Interateions of hatchery amd native cininown from Dregon woastal streams.

H-1. Coastal streams that are believed to have
 traneplante in recent year"sa

E-so GDFW Bummery of mtombing molicy for Oregon Coastal Streams.

B-Wn Coastal Etremms where mbuplus have bewn available (to 1982) "

B-4. Hewctreriew on the Wolumbia Fiver momo Oregon momatal fishing ports.

 Stocに,

 the troll fismery in Oregon ports. 1952. 31.
 catches (thousemdoffish), 1971 to 1984 .

C-4. Oregon coastal streams, 1970-1979"

The potential for increasing the Oregon harvest of chinook salmon is evaluated with respect to enhancement and reprogramming efforts which would use Oregon coastal chinook stocks. Several candidates for transfer were selected on the basis of their contribution to the Oregon offshore fishery, their abundance, and their disease status. These were the Rogue spring and fall and Umpqua spring stocks. However, genetic concerns (e.g. development of a "superstock"), life history strategies, and socio-institutional concerns precluded these stocks from being recommended for transfer at this time. Further study is required on various aspects of these stocks as well as on the other coastal stocks before reprogramming or enhancement efforts are initiated.

Salmom neve wecome a predomimant element in the ecomomy, politics and culture of the Fewific Northwest The resourcen once thought to inexhawstiblen has become swaree anctrequires careful management wo insure its perpewtation. This report addresses the permedved need to increase the aburdence and Harvest of ctumoot selmom in the Oregon offshomefishery to satisfy various uEwr wroups. The objectivee of whisestury are to review the stexus of the Wregom wosstal whomo stocks and to evaluate the imwert of intrectutions of hatchery fish on mative fish populations.

The statum of Oregmm ometal chimook stombs is reviewed with respect to the contribution af various stocts to the oregon offehorm fishery, thejr migretory behavior, their ocean distributiong and their abundancen

The wvaluatimm of haternery and native fish interactioms inc ludes genctic comcerns of enhancement and reprogramming efforts, density dependence and currying wapacity considerations, end gemeral ideas governing stoctimg policuy in oregom.

Scope of study

1. The factore thet are important in assemsing the feasibility of increasing chinoot production and/or contribution to the Oregon offshore fishery are amalyzed im a qualitemtive mammer" Availabe information on many of these subjecta is inmited or Gpor adicu hemcer a quantitative analysis (umbes riogrously executed) would be constremmed by the imadequacy of the origimal daten
2. The Columbe Fiver mystem was not reviewed jn deteju due to time limitations" Complicetioms of evaluatimg the Golumbia Fiver ardeefrom the eomplexity of the system and the intrawate life history of whinook, Furthermore, Columbia whinoot camoot be
 information on Columbia fiver chinoot: a rewent report on their stetus by the Oregorn Demertment of Fish and widdidfe (ODFW) is
recommenced (Howell, et al., 1.985).
※n An ascescment of stowts from other states is not included in this evaluatiom: Califomia or upriver Golumbia river stombs may be cuitable for subsequent study,
3. The potentiel for ingreesing harvest and abundarice is presented in terms of reprogramming stocts that are rejeased from existimg hatcheries and incmeasimg the mumber of fish released from existing hatwheries. "Enhancememt" by improving the quality of the fish released is not considered in this report but should be addressed jn later studies.
G. Fisheries management concerns in terms of stoctirecruitment and escemement and aldowation is briefly reviewed but is generally beyond the scope of this report.
G. Hatehery management practices (egn time and mize of release) are mot evaluated.
4. DuE to time 1 m mations, the level of resolution of this study is such that areas of harvest within oregon waters are not distinguished in the evaluation of montribution.
5. The determimation of rontribution of stocts with respect to age riasses was considered beyond the scope of this study.

Acknowledgements
I would dife to thants the followimg people for their assistancen Jim Martin (ODFW), James Lamman (osu), Jay Nicholas (ODFW), Ramdy Hjort (OSU), Frant: Fiatti (Oregon Aquafoods) , Fobert Mcouecn (ODFW), Steve Jacobs (ODFW), Fay Grown (ODFW), will am Fearcy (OSU), Barry McFhersom (DOFW), John Fryer (OSu), Tony Amandi (0su), Fichard Holt (osu) and the data woldectorsu I especially acknowlecge the contributions made by Fobert Garrison (ODFW), J. kemmeth Johmsom (FMFC), Alan McGie (ODFW), Warren Groberg (OSU), Jeffrey Fodgers (ODFW) y and Martin Fitapatrick (OEU).

The Etatus of Dregon Coastel Chimook Stock:

General
In order to evaluate the potential for reprogramma or embancing oregon chinook stocks in the future; it is important to gain an understanding of the health of the resource. Historicel and recent studies were reviewed to provide a long term perspective on the status of Oregon woastal whinook stocks. The status of these stocks was assessed with respect to: contribution of Oregon coastal chinook to the Oregon Offehore fishery, migration and distribution of Oregon chinook salmon in the Nomth Facifice Dceann abundame of various woastal chimook stocts anct ctisease problems of Oregon chinook ealmon.

Contribution of Oregon eoastal whinook to the Oregon offmore fishery

Litermoure Feview of Tagging and Marking Sturies, Fast te Fresent

Historical Tagging and Marking Studies
The eardiest tagging studies that provided information on the migrations of chinook from Oregon coastal streams and the Columbia Fiver were conducted in Canadian waters from 1925 to 1980 (Williamson, 1927 and 1927 Gidemens, 1927! Williamson and Clemens, $19 \% 2$ and Fritcthard, 1934: (Appendix A-1.2) , Frior to 192s, tagging and marking experiments were not designed to study the ocean wontribution or migration of chinook salmon. The tegging of chinook walmon of the Oregon woast in 1926 mepresented the first attempt to learr aboutt the maratory behavior of ehinook salmon found off the Oregon coast (fith and Holmes, 1929) "However" littie effort was made to recover the tags and only two chinook recoveries were reported (Van Hyning. 1951). In 1948 ancl 1949 a more intensive resemrch program was conducted to study the migration and abundance of troll-caught chinook selmonn The Oregori fish Commiseion tegged l3g chinook in the general area of coos Bay. There were o recoveriesa 4 off the Oregon coast and 2 off the Cadfornia coast. This tagamg etudy was accompanied by increased efforts to report the recoveries of tagged fism.

Other early studies reported on tagged fish which 1 ater
 and Hughes, 1951), in Washington from 1948-1949 (Kauffman, 195.1 ,
 1.950 to 1955 (Farker and kirmmess, 1956)

Early merkimg experimente do not provide mumh jnformation on the micgration or contribution of Dregon chinook salmon to the Oregon offstoreftimery. Fixh anct Holmes (1929) released 100, ogo Fin clipped fall mhinmok in lowen All of the 18 troll recoveries were macte wff or momth of the Columbie Fiver: however, biases exjet dhe to the variable effort expended in recoverimg marts.

Murked sprimg whinook were released from Oregon hatuherjes from 1948 to 1.969 the omby coastal streams involved were the Tr"ast (trood year 1949), the Fiogue (brood years 1958-1962), and the Umpqua (brood years 1950 to 1962) u \quad imited information is available wn wontribution to the offshore fishemies begimmimg with brood year 1958.

Limitations of the Early Marting and Tagging Studjes
The I imitations of the early tagging and marking experiments greatly resturiot the use of this informatiom. some of the defjciencies of these exrly studies area

1. There was mo systematic recovery of marmed chinoots in the ocean, or of tagged chinoot in the streams.
2. There were lerge variatioms in the opportunity to recover tagged fish, especially in streams. Ewamples: There were more faciditiec on the United gtates streams to capture tagged fish than there were on Canadian streems (Godfrey, 1968).

Most of the recovery efforte were directed at the Columbia Fiver and therefore, the information was biased because most of the recoveries were from that arean

In 1947, the Fish Commission of Oregon emphasized the recovery of coho marks and not much effort was placed on tite recovery of chimoot marks.
 the Gacramento and Columbia Fix ver Matoheries in 1948 so it was impossible to determine the natel streame of the trollomaght marked fish (Van Hyming. 195i)。
4. Differential survival to ceatch of mambed fisho
E. Fin mark regeneration and the appearance of "natural" fin c.lipen

Ga Sturayimg of tagged fighn It cammot be verified thet the stream of recovery was the stream of origin of a tagged finh.
7. Hooking mortedity of tagged fish was undetermined for many of the studies. Differential mortality of tagged figh is also a solrece of error.
8. Tagging experiments were inadequate in scope such that their results tended to exaggerate the importance of some stocks while umderestimating the importance of others. This occurred when the experiments were limited to part of the fishing season and/or area (Informal Commission on Chinook and Coho, 1969).
9. No early cooperative efforts to report the recovery of marted and tagged fish. However, in 1948 and 1949 the cooperation between Californian Oregon and Washington was entanced because each state was involved in a marking or tagging experiment. Godfrey (196日) noted that the tagging programs in Canada and the United gtates were out-of-phese in terms of effort expended to tag fish and the times anct locations of the experiments. lost of the chinook tagging experiments in Canada took place approximately 20 years before most of the 4.5 . chinook tagging experiments.
10. The actual numbers of minook that had been tagged were not great. From 1925 to 1955_{9} Camada tagged appromimately gooo chimoot and the U. S_{n} tagged approx mately 7 Goo chimoot (Godfrey, 1968).

Eecaume of these limitations, information from these early studies will be used only as observations on where a particular fish was at the time of release and capturen

Fin Marl: Experiments, 1962 to 1973
In the early 1960 's, the evaluation of the production of fall Ehinoot: in Oregon centered on fish from the Columbia fiver. Fesults from these marting experjments provided the basis for management of the resouree for many years. Detailed reviews of these experimerts are presented by Fulford (1964), Henry (1965), Van Hyning (1968), Cleaver (1969), and Lander (1970), Eecause the status of the mesource has changed considerably in the 2o years sincey more recent information on Columbia Fiver chinook stock status (from coded wire tag studies) now provides the basis for management decisions.

Groupe of fall chinook were marked from 1962 to 197 and released in Various coastal streams: Fogue (Lobster Creeb stock), Umpquan Sixes, Elk, Chetco, Tr"asky Coos, CoquiJ]eg and Alsea (Garrison, 19日1). Marting experiments on Dregon moastal hatchery spring chimook were comducted on the Fogue and Umpqua Fivers from 1962 to 1975 s Spring chinoot from the Willamette Eamin were also marked during this time period.

Like the eaminer marking experiments, the use of information from the f ater fin mark studies is restricted due to deficiencies in the tectiniques or sampling efforts. Although greater opportumties existed for recovering marked fish and the cooperation between Canada and the $U_{n} B_{n}$ was enhanced, biases in the data prevented its use for accurately estimating contribution. Mark duplication and fin mart regeneration contimued to be problems.

The effort to recover and report fin marked chinook declined starting in 1974 because of the change in emphasis to the eoded wire tag program. After 1976, there was no recovery of fin marks encept by individuals interested in the terminal fisheries or hatchery production (\mathcal{E}. Johnson, pers. comm.) " In turn, recoveries of fin marked fish after 1976 (frombrood years 1971 to 1974) were sporadic and were not included in this report.

Information was not available for recoveries of marked chinook in catch years 1967 to 1967: however, the facific Marine Fishery Commission Regional Mark Frocessing Center has individual reports of fin merts recoveries from 1945 to 197 s (K, Johnson, pers. (comm.).

Coded Wire Tag (CWT) Studies
The earliest releases of Oregon hatchery chinook with coded wire tags (standard length binary tags) were of fall chinook from brood year 197世. The earliest non-hatchery coded wire tag release of chinook was in 1977 (Wahleg draft 1985). Color coded tags were used previously to mark Eig Creet and Trask stooks from brood year 1970. Since 197s, the wse of CWTs to evaluate the contribution and distribution of various stocks has increased and has essentially meplaced the ear lier marking methods. However, until very recently, most hatchery fish with CWTS were not mareed for the purpose of determining contribution or distribution (Wahle, dreft 1995).

Most CWT fall chinool have been released from lower Columbia Fiver Basin hatcheries and most CWT spring chinook have been released into the Fogue and Columbia Rivers. Non-hatchery (native) CWT chinook have been released in the John Day and Deschutes Rivers. According to Wahle (dratt 1905), the Oregor Department of Fisheries and wildidfe (ODFW) marked 22.7 milidon hatwhery chinook with CWTs and 285,000 non-hatehery chinook from 1976 to 19日3. Frivate hatcheries have meleased CWT chinook but recovery information is avallable for only a few trood yearsu

A preliminary analysis of the contribution of hatchery produced chinook to the Wesst Coast fishem ies identified techniques that are required to better estimate stock contribution using CWT data (English, 1985). The analyses were based on tag recovery data from brood yeare 1971 to 1978. It wam found that the contribution of U. G. hatchery chinook to the coastal fisheries remained fairly constant from 1974 to 1978 but has since declined. This pattern is reflected in the overall contribution of Oregon chinook stock except for the northern coastal stocks (R. Garrisong pers. commn).

The dectime is closely correlated with the decreese of survival to catch for most Un_{G}. hatchery stocks of whinook salmon (English, 1985). However, the Eurvival to cateh data for several Oregon areas (Appendix $A-2$) do not explain the differences in contribution observed for the northern and southern chinook stocks.

Some of the decrease is probably due to U.S. management strategies which redured harvest rates on some U. S. chinook: stocks. English (1985) 玉uggests that drastic: and unexpected declines in hatchery contribution can have serious implications for management, i"e. increased harvest rates on wild stocks may result, especially with those strategies that use "catch ceilings"

Unexpanded estimates (i.e. only marked fish are represented) of CWT recoveries of hatchery releases for brood years 1971 to 1977 reveal that "tule" fall chinool produced in the lower Columbia River area contributed 48.9% to the $\mathrm{B}_{\mathrm{H}} \mathrm{C}$. fishery, 19.1% to the Washington fishery, 16.5% to the Alaska fishery, 8.0% to the Columbia Fiver fishery, $\sigma_{\text {. }} 1 \%$ to the Oregon fishery and 1.1% to the Califormia fishery. of the and\% contribution to the oregon fishery, 5.4% was caught in the troll fishery.

Unexpanded estimates of CWT recoveries of chinook produced along the Oregon coast (from brood years 1971 to 1977) show a different pattern of contribution. The contribution to the Oregon
 coastal hatchery chinook contributed 32.4% to the California fishery, 18.1% to the $\mathrm{Bn} \mathrm{C} . \mathrm{fi}$ fhery, $\mathrm{Ba}_{\mathrm{n}} 2 \%$ to the Alaska fishery and $5 . \% \%$ to the Washington fishery.

Oregon catches only 5.2% (4.4% in the troll fishery) of the entire West Coast production of chinook: The mean survival to catch estimate for chinook released from the oregon coastal hatcheries was substantially greater than that from the lower Columbia River hatcheries (English, 1985) (Appendix A-2).

The CWT data summarized in the Facific Marine Fisheries Commission (FMFC) mark recovery reports contains observed (actuel) recoveries of CWT fish and emtimated mecoveries. Estimated recoveries refer to the number of fish caught that are estimated to contain tage. Corrections for differences in sampling methods and an expansion factor from area of port of
recovery is imoluded in the estimate. This is not to be monfused with the expansion factor used by Engitsh (19日5) to mepresent unmarked fish redeased with marked groups of fish.

To date there is mo computer databese for metrieving and analyaing CWT data for Oregon. The FrFF presently is reviewing several ways to establish a database but methods and locetion of the central office are under discussion (Garrison, pers. comm.). The streamlining of this information would greatly aid studies designed to estimate contribution and distribution of various Dregon whinoot stocks. Frant de Libero (of Washington) has keypurnched some of the CWT data for Oregon chimook releases and ken Johmsom (FWFC) has womputer access to cht data for oregom chinook brood years 1977 to 198.2 (Johnsom, pers. comma).

Limitations of Coded Wire Teg Studies ard Estimates
The dimitetions of coded wire tagging mon-hetchery stock: (Wahle, draft, 198 E) are:

1. The inačessibility of many streams where chinook are produced.

2n The difficulty of collectimg statistically significant numbers of reprementative non-hatchery samples.
3. The fragility of chinoot: smolts.
4. The meed for repeated marking experiments (inen replicates)"

Limitations of using an expansion model to represent unmarked fish with groups of marked fish. Accuracy of the estimates depencs on satisfying the following assumptions (English, 19日5):

1. "Tagged fish are representative of the defined group in that they are representatively sampled and are treated the same as the untagged fish both before and after tagging:
2. "Tag shedcing is mon-existent or is estimated and corrected for:
Z. "No differ"ential mortality occurg between tagged and untagged members of the group from tagging to release, or from release to recovery, If differential mortelity occurs it cam be estimated and adjusted for
3. "No differential growth exists between tagaed and matagged fish affecting catch distribution in space or times

ज. "No differemtial =usceptibility to the fishery exists between tagged and urtecged fishat
bn "No error in iomentifyimg tagged and untagged fish existsn"

Some of the jamitations of the unexpanden estimates (those currertily used in the CWT recovery summeries for each match year) ar"E:

1. Dregon uses different "expension fawtors" than other states in whe estrimates of contribution. Oregon expancs the observed catch by port rather them by arean the poseibility of expanding by area presently is under discussion (Jotnosong pers. comm").

2n Differemwes in sampling mettocis, effort, and fishing regulations (eng. harvest rates) Exist between the various fisheries.
 in harvest rates should be acoounted for in order to analyze tremde over time. This, however, was comeidered beyond the scope of this report.

English (1985) notes that "the contribution estimates are relatively insensitive to the veriety of stretegies used to represent ummarbed U. S_{n} hatchery releages." However, he also states that "the ascumption associated with the theoretical model used to estimate contribution heve mot beem rigourously eveluated with respect to (iwT mart recovery data." The development. of a mome complete database and of better analysis techmiques wilu improve the accuracy in interpreting contribution estimates.

Other studjes mad methode that may be used in determinjng comtribution

Other techmiques that can be used to evaluate contribution are reviewed briefly" These methods arestill in their clevelopmentem phase and not mucth information is available for Oregon coastal whinook stocks.

Scale Analysis: The wexle pattern analysis method can be used as a method for estimating comtribution of non-hatohery fish. Wahle (drefty 198 s) suggeste that information obtaimed from this method must be coupled with CWT data to provide accurate estimates on the proportion of wild fish in the cetch. Geame analysis has been used in the past to gather infommeion on life

History Gharacteristics of various stocks For example, swele analysjs was msed to determine resjdence time in gixes Fiver
 time subsequentiy was used to detemmime the time of ocean migration of chimook adults that returned to cpawn.

E1ewtrophoresisn The Ejectrophoretic method of genetic storta identificetion has been used to determine the origin of fish caught in the ocean fisherjesn Unless a unique allele is present, however, the stomk of origin canmot be established definitively. While electrophoresis wan be used to differentiate between etombc of Asian and North Americum origing it rarely ean be used to differemtiate between stocts that originatec from a commom geograpmical arean This method canmot stand alone as a measure of contribution and needs to be complemented with data from CWT
 from electrophoretic stucises of Oregon coameal chanook stomks with respert to contribution or distribution Gome information is availatale on Columbia Fiver chimoots stoct: (utwer, et aln, 19go). A serious limitation of this method is that the genetio integrity of the coastal storve as well as the Columbia Fiverm stocts is probably not intact. This is due primarily to the long history of trensplents that has occurred in Dregon streams. This aspect is reviewed in greater detail in Fart II.

Acoustic Tagging: EEGause of the Expense and technical difficulties associated with this method, acoustice tagging of representative groups of Dregon woastal chimook selmon probably wid. mot be used in the mear future to evaluate contribution. Fresentily this method $i s$ used to study river migrations of salmon (Fearcy, pers. comm.) and to study the movements of salmon in the open owean (seev vertical djetirjbution).

Evaluation of Long Term Fatterns of Contributiom

Cometranmts om combinimg earlier studies with later studiem.
Due to the many 1 imitations of the early and more mecent tagging and mambimg studies, information cannot be combined to give a quantitative expression of contribution. Few of the Enperiments werm designed to study contribution or distribution. In turny information from the earmider tagging and martimg studies (including the fin mart: studies to 197 m) is useful as an observation on the movement of a particular fish or group of fish, but rote as a measure of montribution of a mtock to the fismery. Thesestudies can be used to support the findings of the more recemt coded wire tact studies in order to provide a long term perspective on the movements of various mhinoots stocts from

Oregon:
Another major problem of wombinimg these sturles je that the stocks have undoubtedly changed throughout history. Some stocks have declined in numbers while others have increased. if there are genetic factoms that influence migretory behavioms, then transfers of stoms that survived to reproduce may have frave resulted in some genetice alterations. The intensity of the fishery has increased and there have been whanges in the types of gear used. Consequently, the distribution of particular stomes of chinook salmon today most likely are different from what they were in the past.

Without the reinforcement of the earlier studies, the EWT data is restricted to evaluating wontribution over the short term. Fesults from only few brood years provide the besis for estimating contribution of Oregon coastal chinook stocks. Consequently, the results are subject to marked change with each new catch year. A longer term perspective on the movements of salmon from various Oregon eoastal streams is useful in evaluating how long term cyclical changes in the enviromment may influence the movements of selmon.

For example, the last "big" El Nino (1982) is believed to have affected the health of Oregon chinoct selmon (Gerrison, pers. comma Fearcy, pers. commn! Johnsom, 1794) " The southern Oregon coastal stocts were more adversely affected than the nowthern woastal stocks in terms of catch and escapement numbers (An McGien pers. comm.). El Nimo might have also caused chinook stocks to have a slighty different migration pattern. Fearcy (pers. comm.) notes that with higher mean gea levels, the currents tend to flow more strongly to the north causing fish to disperse more widely.

From 1953 to 1957 -- the three years after the previous "big" El Ninow- the number of fish mpawning in standard gpawning index streams declined (Appendix A-s) . Whether this decline is attributable to the warm ocean cumpent is undetermined. (The investigation of this point is elearly beyond the scope of this report but is worth investigating in future studies--- it may aid in managers abilities to adjust strategies during years when enviromental disturbances can be predicted). However, with the synthesis of long term information on contribution, distribution and abundance, some repeating scenarios might be observable for suct cyelicel environmental ocwurmences such as the El Nino.

General Fatterns of Contribution
In general, morthern Oregon coastal chinook stocks tend to migrate north and southern stocks tend to stay in oregon waters or move southward. This does not mean that all fish leaving a northern natal stream go north: rather, a larger portion of the group goes mortth than eouth. When we estimete contribution to the
various fisteries we are trying to estimate the relative proportions of marbed fisth that are caught by the West coast fisheries Eecause estimated contribution is not expanded to represemt ummarbed fich, rot much cen be seid about these fish at this time.

Summery of Findings on the Contribution of Various comstad chinook stocks to the offyhore fishery

1. The mhinook stom: that were foumd to womtribute primerily to the northern figheries (WA, EC, and AF) aren Alsea fall chinoot, Nestucm spring and fall whinoot; Trast spring and fall chinoots Salmon Fiver mative fall chinoot;, Yaquima mative fall whimook, Oregon Aqua-Foods fall chinook (primarily Trask fall stocts) released in Yaquina Eay.

2n The Ehinoot stocts that were foumd to contribute primarily to the southern (CA and OF) ares Chetco hatehery fald ohinook, Fogue hatwhery spring chinook Fogue native fall cuminooty Amadromous hatehery wprimg (Rogue stock) and Umpqua hatwhery spring chimook. Anadromous hatwhery fall chinook (Alsea and Trask gtock) tend to contribute to the northern fisheries.
※" The chimook stocks whose contribution is stijl umastermined or gpread between the various fisheries si ee contribute to the nomthern arnd southern fisheries) aren Elk hatwhery fall chinoots, Coos native fall chimoot and Umpqua fall chimook: The widespread distributiom of Elt fall chinoot mey be artifactual. This is bedieved to be the result of the delayed Dotober and November fishery that operates off the mouth of the Eit; Fiver" EIf Fiver chinook cemmot enter the estuary because a sandbar blocks the entrmace until it: is removed by the firet big fall freshet each year, Consequently, Elk Fiver mhinoot are believed to follow a predominantly morthward migrationn 4n Not enough information was available to evaluate tomtribution of the following chinook: stowks: Eurnt Hill, Coquille, Eandon (om the Coquilye), Nehalem, Siletz, Siuslew, Sixes and Oregon Aquafoods spring chinook: releesed in Yaquina Eey. However, the spring chinook (Trast: stock) meleased by Oregon Acuafoode are believed to contribute to the momthern fisheries (fiatti, pers. comm.).

Ocean Miguations of Chimook Salmon from Oregon Streams and Fivers
Triformetion on the ocesn movements of whinook salmom comes from various sources. The CWT Etudies provide eviderce for the

the coastal fisheries. Dccasionally some of these CWT chinoot: salmon are caught on the high seas by foreign commercial vessels or research vesselen Historical tagging and marking studies provide limited information on the movements of oregon foastal chimook salmon on the high seas because the opporturity to recover fish in distant areas was low.

Gcale analysis and electrophoresis have also been used to cletermine the general area of origin of salmon caught on the high seas. In recent years, the primary focus of identifying the orjgin of salmon caught on the high seas has been to detemmine areas of intermingling between United states and foreign selmon and not to study distribution.

Acoustic: tagimg is another meang for learnimg about the ocean migrations of chinook salmon. However, there has not been any acoustic tagging of chinook from Oregon for the purpose of studying ocean distributionn

In this report, release and recovery information for Oregon coastal chinook salmon is summarized with respect to ocean movements. fnformation on vertical distribution was obtained primarily from reports on bottom trawl bycatch. Additionally, the migratory behavior of salmon is discumsed briefly as it is relevant to understanding the distribution of the resource in the North Facific Dcean.

High Seas Felease and Fecovery Information
Most of the imformation on the migrations of facific salmon has come from studies conducted after 195 by Canada, Japan and the United Stetes, members of the linternational North Facific: Fishemies Commission (INFFC). In 1952, the dapanese developed the commercial high seas fisthery for salmon in the North facific. This led to increased interest in Etudying marine habitate, distribution, migration and intermingling of Fecifice Ealmon.

Comprehensive reports on the migration and distribution of Facific selmon show that chinook salmon are more widely dimpersed in the oceang travel greater distances and move in deeper waters than other salmonids (Maneer, 1.964 kondo et al. 1965 Hartt, 1966: Fredin et al., 1977: Major et al., 1.978; Eurgner, 1980! Hartty $\mathrm{j} 日 \mathrm{~g} 0 \mathrm{n}$ Fearcy, pers. comm.). Because of these factors as well as the logistical problems in targeting a research study on chinook, information on their distrmbution is limited. Also, for strategic and scientific reasons, tegging efforts have been concentrated in known areas where high seas stocks are captured (e.g. the Aleutians) (Hartt, 1962).

Some of the early tagging studies indicated that chinook migrate long distances in the ocean. A chinook tagged south of

Adat Island jn 1956 was recovered 11 months 1 ater in the Galmon Fiver" Idaton the minimum distance tirevelled was satoomiles (Hartt, 1962). Masom (1765) motes that most chimook are foumd across the Facific: Ocean from at 1 east 41° Jatitude to the Aleutian chain in the months of June and mugust.

The Extent of the ocean distrjbution of whinoot Etill is not wel. 1 understood for the various Oregon comstal stocks. There is evidence thet chinoob from the upper Columba River have extemsive migrations to northern waters while lower Columbia Fiver chinook tend not to migrate as far morth (Fich and Ball.
 coastal Oregon chinoots stocks are believed to mi grate greater distances than the southern aoastal stock (FWFE; 1952 and 1959 g Earrjsom, pers. comm, " Therefore, some stocts have more extensive migrations than ather stocks.

Accomoding to the TNFFC Anmual Feport of 198 By Oregon chimogt: Ealmon were not: detected in the Eering Sea and North Facifdo Qceen "except in three fine stratan suggesting low relative abundance in 1980 " The incidental waten in 1982 , as reported by forejgh observers, was made up primarily of whinoot salmon (INFFC Ammual. Feport, 1982).

The Japanese mothership fishery and research vessels mostay took immeture chinook (predomimately ocean age two-year olds) in the Eering See from 1972 to 1980 . An attempt was made to analyee the date for a yearly comparisom of watmppr with effort (CFUE) of chinook selmon caught in the mothermhip fishery from late June to late July in the area of 56° to 60 N and 1750 E to $175 \mathrm{~W} . \mathrm{High}$ CFUE appeary to be cyclic: al, owcurring every five yearsa for example, high CFUE was noted for 1964, 1969, 1974 and 1979.
 were high but in other years they were low (INFFC Anmual Feport, 1981) : This informationg although inconclusive, suggests that ※himoot stocks expemience some short term wycidcal variationsa Consequently, informetion from only several yeare of CWT studies may not reflect these ehanges in terms of distribution om contribution.

Few removeries on the high sess of CWT chinook from oregon Have been made, A figh mejeased in Elk Fiver in Geptember, 1980 WaE recovered in May 1982. Two fish releesed from the Galmon Fiver, Oregon in 1990 and 1981 were recovered in the same area off the Aleutians in Novemtary 1982 (TNFFC Anmual Feport, 19gs).

Miguatory Eehavior of Chimool: Balmom in The North Facific Demen
Although intormation on chinook Eamon is dimited, a brief overview of various factors that may influence salmon movements is presented in order to provide some insights into chimook migratory behavjors.

Strong migratory patterns are most likely genetically determined, However, enviromment (e.g. recognition of water mastes and photoperiod cycies) plays a sicnificant role in the migratory behavior of salmon. Changes in the environment (matural or man inctuced) may alter the envirommental cumes the salmom use in their migrations (Eurgner, 1980).

Burgner (1700) notes that during most of the salmom's migration in the open ocean, they swim near the surface and away from landmasses. This generalization, however, may not be true for thimoot: benavior. Juvenile selmonics are believed to migrate rapidly and extensively during their first summer at sea (Hartu, 1980) " Chinoot thet have just left their matal stream areas tend to stay whose to the mainlandy as is inoicated by watoh data (Major et al. " 1978) " Chjnook in thejr second growing year are widely dispersed on the distant high seas although mot to the extent of their maximum reworded distributjon (Mejor et al." 1978).

Somar observations and catch patterns from gillmet catches indicate that salmon disperserather than form definedschools during feeding perios (Eurgner, 19日0). There is some evidence that the feeding areas in the north (e.g. off the Aluettians) are richer than the local areasy which, in turn, may accoumt for the majomity of salmon heading north after leaving their natal streams.

Galmon use ocean currents in their migrations but there is evidence that they also cross defimed current bouncaries (Burgmer, 1980). Temperature, salinity and food supply also have been examined as factors that are important migratory cume but defjnitive wonclusions have mot yet been reached (Favorite and Hanavan, 196马: Major at al., 1978: Eurgner, 1980) "Fearcy (pers. comm, notes that currents, temperature, selinity and food supply are related factors and that migration is probably influemed by the interplay of these variables. Temperature (both mean sea and air temper ature) " however, may be used to explain deviations in rum timing (Eurgner, 1980): Nishiyama (1977) concluded that rums are earlider in warmer years than in colder" years.

Vertical Distribution of Chinoor: selmon

The vertical distribution (movements within the water column) of chinook: is not well understood. They are taten in surface gillnets and incidentally in bottom trawls. In North Americag it: is not unugual to find ehinoot at depths to 110 meters (Major, et al, 1978) "Most chinoot: are caught in the upper 78 metwers, although some are caught below 128 meters (Major", et al., 1978).

Evho-sounding experiments ronducted on high-seas selmon fighing grounds in the Aleutian area revealed that salmon ascended after sunset and descended after daylight (Hashimoto and

Maniwa，1959：and Manzerg 1964）．In these studies，the strongest entos were observed to come from the deep－mcettering layer that Ehifted with the thermocinme．

The offshore trewl fishery from Eamom to fort Crford in 1982 took primarily small whimook（2 to 4 1bs．）at 80 to 220 fathoms （Neid Fictimond，Cherleston Lab，Memo， 11 May 19 gen Fearcy，pers． comm，＂In the winter of 1981 y most chinoot were caught from 50 to 日O fathoms between foos Eay and Willapa Bay，WA 〈F゙eartyg persn comm，＂Measumements of 75 whinoot taken as bycatch to the solen cod，roctafish and pimb shrimp ficheries showed that the fieh varined im size from 292 to 75 mm fork lemgth and age groups ome to four were represemted．of these fish，eleven had CWTE The CWT fish were fall and spring ohimook of BY 1977 and 1978 that had
 Columbia Fiver and Coos Bay）．The mtocts represented in the selmon bycuath of commercial trawlers im winter were similiar to those ceucht by trollere during summern Fearcy（perm comm．） suggeste that these stombs may not be highly migratory and may gpend their entire ocean dife in locel wateren

Ex frimook of EY $19 日 2$ were recovered in the bottom trawl fishery in the following areasy Westport，Depot Eay，Winchester， amd Trumidad，CAn These fish were Fogue ehinoot：which were released from the Eig Creek Hetchery，Columbia River（Garrison， PErs． Comman ）

If tetch provides the window for studying distribution and contribution，the possibility that ehinook are not caught heavily in the troll fishery in some areas because they armetraveling in deeper waters is an important point to comsider．Amother related point is that adult chimook may be on their homeward journey and are not feedings hencen they are less available to the offshore fishery．

Abumdanme of chimoot salmon in the Oregon Coastal Streams

Abundance of Natural Spawners

The number of natural spawners found in Oregon eoastal streams is difficult to ascertain．Several Eources of information are reviewed in the attempt to determine how many fish are produced in various coastal systems．

Funch Card Estimates

Furnch card estimates provide informetion on the river sport Eatofn However, the use of this informetion in determining the abumgance of naturaj Epawners is limitedn

Early punch cards did not separate woho and ohinook watches
 estimetes, coho and chinook catches were differemtiated postm facto on the besis of the percejved abundance of the two species in coastal streams. The punch card estimetes tend to have a "positive respomse bias." Feople who catch fish are more ljkely to turn in wheir cards than people who do not Eateth fisho This Mese teen substentiated by womparisons of stetisticel oreel murveys with pumoh card wetimates (Jay Nicholas, pers. comm.). Amother problem with the punch gero jnformation is that the rete of exploitetion is unknown for most streams with the possible exception of the Elt Fiver. For some streams (e.g. the Umpqua system), pumch card data may provide relatively acourate information (NEGi※, persn (wommn)

Dam Counts

Winchester and Gold Fiay dam wounts provide data for estimatimg the numbers of chinoot in the Umpqua and Rogue Fiversa Although the location of the dem may bias the results, this data is believed to provide an ancumate indication of abundance (J. Nicholas, pers. (omm, : A large permentage of the Eoring chinoot: rums from both rivers reross the dam while a low permentage of the fajl whinook are represerited in the dem eounte. The sprymg cominoot counts at the Gold Fay and Winchester Dams are presented in Table d. The combined hatchery and wild counts at Gold Fay Dem from 1942 to 1960 averaged $28, ~ B E 5$ figh per year (mofhersong pers. comm.) : the combined average at the Winchester Dam from 1946 to 1980 was 8015 fish/year): The 1985 count (to Jume 15) at both dams admeady is exweptionaly high: whereas the 198 m and 1904 Eommts were less than averagen This may indicate that the Southern woastal stocks are beginning to recover from the sump of the 1 ast two years, which presumably was coused by the Ed Nimo.

Historicel Fecorcis from Qanneries

Historical information on the commercial harvest of chinook, 1892 to 1961, can be used to eveluate the historical aburidance of chimook from Oregon coastal streams (Appendix A-G). Early records came from cemmeries. Even though the manmeries operated umder a

TamIE 1．COUNTS OF WJLD AND HATCHEFY BFFINE WHTNOOKGT THE GOLD FAY DAN，FOGUE FIVEF AND THE

WINCHESTEF DAM，UNFGUA FTVEFI

YEAF
1949
1943
1944
1945
1946
194%
1948
1949
1950
1951
1952
195
1954
195
1956
1957
1958
1959
1960
1961
1962
1965
1964
1965
1966
1967
1968
1969
17%
1971
1972
1973
1.974

1975
1976
1977
1978
1979
1980
1981
1983
1.98 .5

1． 984

GOLD FA
41.779
86，126
B， 6
S1．976
$28,2 \% 4$
$5 \mathrm{E}, 657$
26.979
18，810
15，\％0
19，44．2
15，888
31，465
24.764
15，714
28，068
17.710
15016
13,972
24,374
51，775
$\leq 1,075$
40,567
\％7，27
47，644
11，422
14，69\％
22，066
55,042
45,101
29，475
6， 988
35，276
16，747
21，49\％
21，670
16，408
47,221
B8， 07
S6， 9.
17，21玉
29.924
$12,51 \mathrm{l}$
12，270

WINCHESTEF DAM

-
-
-
$2,50 \%$
,$~$
211
$2,49 \%$
$2,69 \%$

2,21
E， 617
5，261
4， 3.1
$\therefore, 189$
7,644
9，314
5，228
4， 398
ت，787
4，0 0
5,25
4,260
11，020
B， 80.
11,780
7,267
9，0．66
7，262
20，077
12,970
$9,9 \%$
16,425
19,674
10,878
10,590
10,677
12,26
日，2＂
9.507

7,586
8，702
B，47
5， 844 $6,94 \%$

Froma McFhersonn pers．comm。and Mcisien pers．comm．
state 1 icemsing system, the reports are not consistent or complete 〈Muljen, 19el〉, Other inconsistencies in the data resulted froma
I. Cannery records represented fish menned at a particultar 1 ocation but not necessarily fish caught at that locationn The price offered and the lowation of the canmery probably biased the retords.
2. Not all selmon were cammed. In the eardy years, most of the sal mon were cemmed but with the development of transportation systems and processing tewnmiques, not as many fish were cammed.

Z Tramelation of mases intofish weight and translation to numbers.
4. Varijations jnfishimg efforta

Spawning Fish Surveys

Spawnimg fish surveys on Oregon comstad fall chincok have been conducted since 1.950. They origimally were intended to provide indices of escapement for various coastal streams. There are twelve inden areas where peat counts of spawning chinoot are recorned (Mceje, 1961). The spawning surveys provide more accurate information than the pumch card dataf however, the தpawning wurveys also contein limitations. Some of these aren

1. The densjty of spawners sampled in a stream is not randomi peak coumts of spawning fish per mile of stream are not: representative of the entime stream. Consequentiy, by multiplying fish/mile by the number of miles in the stream, the estimated number tends to be infleted. Also, it is difficult to know how many miles of stream are used by native fish. Adjustments for these biases can mpore whe relidability of the estimates. Comversion factors curremtly are used by ODFW (Solazzi, 1984: J.

2. The overall level of effort devoted to these surveys has declimed thmoughout the years (Cummings, 1979). McGie (1981) notes that the method of obtainimg thece indices hes not changed with time but that the number and lowetion of some survey units have chamgedn Consequemtlyg $\mathrm{ft} \dot{\mathrm{m}} \mathrm{m}$ difficult to analyze the information in terms of long term trencs, although methods for doing this exist (L) emovich, 1977 Cummjngs, 1979 and McGieg 1901).
3. Limited spawnimg recomds are available on the southern coastal chimook stocks.

These surveys were used in this report as an indicution of the relative abundanee of various mative coastal stocks of
chimook and as a rough quelitutive estimate of the long term status of these stocks．Feet：coumts of fish per mile from selected Gpawnimg fall chimook surveys from 1950 to 198 are presented in Figure 1 a the deta were adjusted to correct for differences in the lemgths of the index streams．

Northerm coastal fail chjmook stombs are healthy and have irncreased at an average ammal rate of 3% per year since 1950 （Mçien 1981）．McGie notes that this increase has leveled off in recent years（pers，comm，．The stocts have been increasing but at a decreasing rate since the late 1970 （ 5 （Appendix A－m）．

In gemeral，a greater mumber of spawners are observed in pear：wounts of Northern woastal index streams than of southern coastal streams：however，this may be areflection of the surveys rattoer than of the status of the populations．The Nehadem， Tillamook，Nestucea，Siletz，Yaquina，Alsea and Siuslaw Fivers Had higher peers counte of fish per mile from 1981 to 198 g than the Coos，Fogue，Fistol amd Wimehuck Fivers．The fish per mile counte on the Comuille Fixver has been higher than the counte on other southern coastiel stereams（except for the counts on the Fogue Fiver before 1979）．However，MeGie suggeste thet the apparent discrepancy between the northern and southern stocks is due to the inadequacy of the surveys conducted on the southern Eocstal streams（pers．comm．）Data from the Cheteon although not inculued in the index counts，show that the average fistmper mile count was very similar to that of the northern streams from 1977 to 19日1（McGieg persa comm』）。

Some short term differences in the peat wounts observed between southern and northern coastal streams may be attributed to the emvirommental disburbances waused by El Nino．Southern coastel stocks were more severely affected because they tend to remain in the local waters．

A grephicel comparison of the historical spawning fish surveys for the various inden streams is presented in Figure 1.

Other Sources of Informetion

A recent report by wahle（draft，1985）provides rough estimates on the number of matural spawners in Oregon coastal streams This information is premented in Table z．

Feleases of whinook from wosstal hatoheries

Estimated hetwhery releases for 198 g to 1986 for coastal streams that release chimook are presented in Appendix A－7 （Wahle，draft， 1985 ）：The estimated number of fall and spring

Figures la to j.

Peak counts of fish per mile on selected spawning survey index streams. ${ }^{1}$
from: Cummings, 1979 and McGie, pers. comm.

1/ Points represented on the graph (except those on the x -axis) are actual data points. Peak counts were adjusted for variations in river length between index streams and normalized to one mile.

Fig. 1a.

Tillamook

Fig. 1b

Nestucee

Fig. 1 c .

Fig. 1d.

Yaquina

Fig. 1 e.

Fig. 1f.

Fig. lg.

Fig. 1 h .
19.5

Fig. 1 i.

Fig. 1 j.

Table 2
FOUGH ESTIMATE OF AVEFAGE
 （adapted fromn Fin Watile，draftn 1985）

Number of Natural Spawner：（Chimook）
Stream Eal1 Spring \qquad
A． 1.5
$1,300 \quad 300$

Beever Creer： 100

Erwin Creat：
Eunmt Hi 11 Cryent：
（）

Chetco Fiver
4,500
Coos Fixver
$7.60)$
Coquille River
11,600
OO

Fil：Fiver
4,000

Euchrog
24

Floras（irtewt： 900
Hunter Creet： 50
Necaricum Fiver $\quad 300$
Nehalem Fiver $\quad 4,000$
Nestuctu Fivver
Little Nestuccia Fijver
5,000
$1,15 \%$
1.500

6

Fístol Fiver ジ

Fogue River
29,800
Wめ）
100

Silekz River
1,800
500
Sium 1 an Fidvert
4,000
100
Sixes Fiver
2,500

Til1 amoot：Bay
Miami Fiver＂
Kiclohis Fiver
1． 100
1， 500
50
Wilson Fiver
5,700
500

 reneaced from Oregom = wosetal metwheriws mas remeined fairly wonstant wince 1964.

Nonlovirel di weames
Imformetion obtemmed from the ODFW mfectious Diseese wrogrem for Selmon and Steelmeed Trout. was used to evaluetwe the immidknce of various non viral diseases thet have been diaghosed in whimock

 कalmon in coewtel hetwherjes are furumculowis and bewterial
 hatereraes beweuse the water wempergture remenms farly oool
 Wi. A amette and Fogue Fiver drajmages, where weter twmperature js higher, filthough the Fogue Fiver gets werm at the end of cummer, the hatchery wan womtrol the temperature of the wamb (water is

Qther bewterial infections found in whimook from woastal

 in the spring (Tomy Amendin pers. womma) " wostian Ichthyophthirits (tom) and gil. amoeba are the most commonly found ard trouthesome wetoparesites. The inciomme of the

 Nehalem mnd Fogue Fivern The wpore stage of weretwmyed has been foumd in adults from the Trast and kiaskamime Fivers (Jommaony etw al., 1979).

Viral diseases

 Øregon walmonids: drfectious Hematopodetiv Necromis (IHN),


```
Tmb%=%
```



```
                        OF OREGON COMST&L STOCKS
```

```
                        OF OREGON COMST&L STOCKS
```


Fur゙umatidomis

Breytand

Gill amoma a

Erterir Fied miouth

IGhtryophtarajus

Batyariat Eit 1.
D) $\mathrm{F}=\mathrm{a} \mathrm{a} \mathrm{GE}$

Gacteridal Fidney Di \#Ew ee

Costia

Gol ummerf

Trwismodina

Tr. i whophry
Fwngu\%

Appears in all hatcherjes: sioniticant observations in: Elk: Fiver, Nomth Nermaem, Salmom Fiver, amd Tra=t: Fiver.

Appears in all hetcherjes except Gwlmon Fivern
 the most important in terms of owcurrence.

Appears in al hatcheries exaept Cedar Greet and Foct Crét: \#igmificant observations inn Elf Fiver. Notwh Nehalem, and Trask Fiver.

Mopears in Elt Fiver, North Nehalem, Fowt Ereek, amod Galmon River: signiticant observations inn Ela Fiver".
 signfionat observatioms ina Elf Fiver and Galmom Fi ver".
 Salmon Fiver", and Trast Fiver: gigmificant ob

Appear"s in Wemar Creet aro Salmon Rivern \#ignifjemat mbservatioms in" Cedar Greek (Hyamine lbe2toxjojty noted im Cedar Ereer:

Mppears in Tramb Fiver with eignificant
observatiomsn
 chinook ere more restistent to Broo.

 amo Selmom Fijver" Gevernd observatiors im El\& Fiver".

Appear: in Geder Guewty Galmon Fivery and Trask Fiver.

Appeate in Eandon.

Imfectious Hemewopoietic：Necrosis is a disease that affぁwts primeridy yourg Ealmonn from alevins to finger in mas．JNHV generelly does not kill actutes athough jt is believed that
 The virus is foumd more often in latewreturning than in eardy－

 moutt tremsmiseion of fHW occurs through whe gillen Verticul tomanmission，were parent infewte progery，has not been proven in the 1 wometomy wut hes mot been ruled out as a moce of trancmj $5=10 \%$ 。

Sprimg mhinown mppear to we more resistant to the virus them \＆all ©hinook（Grobergy pers．Eomm．）However，gprimg mhimook are
 m＂er rased in the same hatcheries with other salmonide thet are more＝wswewtible（Appemcix Ame）。

The first isolmtion of mbN from Oregon whimoot owourred in
 severny putuik hatcherses heve populations of whimoot that are

 was i wolated from urariver bright whinook from the Golumbariver （Bommevid 1 e Hetchery）．
 from spewners that test positive for the virus are destroyedu When egge from different spewners have ween poolect the protiem is amplified．In the wase of Columbia Fiver whinoots this has Eevere ramifications！several milliom wogs had to be destrayed Iast year and a contimuing problem is antionpeted．There is speculation that ald Columia fiver spring whimook wtocks have IHNV（Warrem Groberg，pers．Gomm，）Because of these disease problems，eggs canmot be transterred from the molumba fiver gystem（fncluding the willamette System）to oregom aoastat systems，IHNV Hes mot beem isoleated fromprivetembetctiertes． However，the virus has been found in wiod fish from the fit：and Ghetco Fiverse（Groterg，pers．©omm，。

Eeceuse of the IHN virus，Elk and Ghetoo fald ehjnook stocts are quarmatimed and comnot be tramferreed to other syetems． Groberg（pers．comm，estimated the development of am THN free stoct：would tebe at least another o years．Adson trameremrentiy is mo vawwjue for THNV．

The other fistrviruses（IFM，vEN wnc a maramyoovirus）are note a serbous problem in whinoot reared in the woastal hatcheries．

Introduction

The impacts of introduced wtocks on mative woastal whincol: stocks are evaluated maly insofar as they relate to the objectives of this study The objectives are to examine the feasibility of jmoreasing the abumdance and marvest of chinook to the Oregon offehore fishery with respect to reprogramming releases or through enhamoement.

Fieprogrammimg refers to replacjmg stombs thet do mot: contribute to the lowal offshore fishery with stocks that do contributen Trengfere would be made to existing oregon hatcherjesy mot directly to streams" The supplementation of wild fish with maternery fish wes mot comsidered in this study.

Enmancement refers to increasing the releases of chinook from existing Oregom hatcheries. It does mot apply to other aspects of the term "enhancement," such as quality of fish released or Etuream retmoijitutwionn

Interections between wild and hatwhery fish

Genetic Comsjderatioms
A review of the interections between wild and hatchery fieh provides the besis for understanding some of the genetic concerns involved in reprogramming and enhancement. Limited information is available on chinookn especially on mhinook from oregon coestal streamsn Thereforen studies comducted on other epectes of salmonids provide most of the available "evidence" of interections between mative and hatchery fish. The following is a review of the resultw of several genetics studjes that have addressed this subject. It is important to mote that the resulte of these experiments have consjamerable limitations. There is no commensus on how important gemetice factors are in mediating hatchery and mative fish interations thereforey it is impossible to apply the fimodmgs of theme studies to Oregon coastal chinook stocks without reservation.

Adaptive differemmen of hatchery and wild fish.

Statement: Native fjeh are belimeved to be well adapted to the envirommental charateteristics of the stream in which they Evolved. Hatmherjes may select trajts thet are deturmental to survival in the wilda

Evidemcen Feisembichler and MeIntyre (undated) state that "if brood fish are transfermed from a djfferent region and the (gene) structuring (of the native population) hes resulted from adaptation, the hatchery population is initially adapted to the wrong envirommemtal conditiomsg and adaptation to the new envirommental conditiome occurs at the cost of redured survival." Studies on steentread reveal that hatchery fish were gemetiondyy different from wild fish and fewer smolts result from hatohery x wild matimgs than from wild X wild matimgen Hatehery x hatchery matings produced the lowest mumber of smolts (fieisembichler and
 concluded thet wild steelhead were a7o\% more capable than hatchery spawners of contimbuting to meturel production of the Gubyearidng steelhead in the kalama fiver" Differences between the "reproductive success" of hatehery and wild spawners might be due to early, nom adaptive gpawning of hatohery stembead and to frequency-dependent competition between fry from wild amd fry from hatchery parents. Mid Ier (1954) suggested that the low survivabiluty of metehery fish $i s$ due to the absence of maturnal selection at early stages in thejr life history.

From these studies, it is apparent that there is a body of evidence that is monsistent with the hypothesis thet there are adaptations of motural stocks that mate them more suitable than introduced stocks for particular enviromments. Howevery this hypothesis cennot be made into a general "matural law" based on present knowledge anc evidence (lamman and kapuscinsti, 1984) a The mature of the inferences mod initial assumptions of genetices studies restrict the universality of their results. While gome of the results from genetice mtudies may be applied to a stock over the short term, they most likely cannot be used to predict long term changes in the stmucture of the population. If evolution is assumed to be a dymamic process, the issue of genetic purity even over the short term becomes nebulous.

Survival of hatchery and wild fish

Statement: Hatwhery fish producem in hatcheries generally survive better than wild fish from egg to fry but wild fish survive better from maolt to adult. Survival from ega to fry bat emergence) of hatehery fish was lower than that of wild fish when bott hatchery and wild figh were reared ing gravel incubat: ion

Evidence: Not much evidence exists for comparing the survival of hatwimery ancl wild fisth in one comtrolled studyn Severad studies compared hatwhbox amo matural survival of pims salmon from egg to fry and commlucted that hatohtow survivel to the time of emermence was significamtly higher than matural survivad (Bams, 1972 ă Bams, 1974; Eadey et alny 1976) , Fiejsenbjeflem and Mclntyre (1.977) planted summer steelhead in gravel incubation bowes (vilbert bokes) jn threw tributarises of tote Deschutes Fiver" They found that survival was lowest for the hatwhery stow: (7en 4%) and highest for the: wild stoct (86.1%) , Survivel fromegg to fry of the hatchery and wild erose wes 79.5% "

Fiesulte from variaus etudies raust be combimed in order to compare the relative survival of juveniles and adults from hetchery and wide parents that Epawned in streams (Jumge amd Fhimmey, 1963: Lister and Walker, $1966 ;$ Major and Mighell. 1969 , Ejorni, 1978; Jonessem and Lirndsey, 198\%) "However" due to differences in experimemtal design and assumptions, the reljabidity of combined results is questiomeble. Although there i.s mome evidemee to support the wontention that hatohery fish (reared in hetcheries) survive better than wild fish from egato fry, and that wild fish survive better from sonolt to adult, the generalization of this informetion is not warramted on the basis of available seientifjc information.

The fithess of wild and hatemery fish
Gtatement: It is believed that the fitmess of wildstocks cam be reduced if hatwhery fish interbreed with wild fisho

Evidence: Fieisembichler (19日4) used a simple genetic model (ome gene lowhs with two wle1es) to show that "density-depenclent mortaidty and gene flow constitute a potent force for eliminating advantageous alleles ands by inferemce, for effecting other potentially damaging gemetic whanges in wild fish populations""

Chilcoteret al. (1984) concluded that the reproductive fitness of wid d stembliead may exceed the reproductive fitness of hatchery stemelhead by $60 \% \%$

The aswumptions and condjtions under whict" these studies were comdurted prevents their ressults from being readily trameterred to other systems and to other species. The interpretations of the resulte provide relatively gpecifje information on the genetic: components involved in hatwhery and mative fish joterateions. Thereforey based on available information, it is exceedingly difficult to generalize about genetic impacts and to extend the information to predict future rists.

Thte genetic woncerns associated with reprogremming and enhancement efforts are outlined in a conceptual mammer" Given the tig gh degree of uncerertajnty intierent in a genetic impact analysisy predictions of wtoct performance at a futume time might be misieadimg. Eonsequently, the informetion reviewed in the previous studies cammot be extended to predict the genetic risks of enhancement or reprogramming efforts.

A major problem with determining fitness is seientific
 environment, we canmot know how a mtoek will perform in the future. There is mo hardeviderice to indicate the existence of genetic risk associated witlitransfers (Lanman, pers. ©omm.) but to setisfy conservative manegement concerns wome risk is assumed to occur".

The genetic risks to the indigenous stowte cen be negativen neutral or beneficial (Laman and kapuscimesi, 1984) geveral studies indicate that the risks of introdured and hatwhery stock matings would be negative (MeTmtyre, 198 git Feisenbichler and Mcintyre, 1977! Eame, 1976) The problem with twese Eturies is that many inferences must be made. Therefore, the pertinence of the infommation to Oregon woastal whinoov stocks is questionetama Figorous genetic experiments on Ealmonids are difficult to perform and at best, presemt an indication of the stombs performance at the time of the study.

Some studies rely on a genotypic. mocled to preadct the gemetic fitmess of various stocks (eng electrophoretic studien and simple genetic models). These models generelly are based an the Hardy/Weimberg Equilibrium (a binomiad expresejon), whose assumptions rarely are setisfied in the real world. The coontribution of incjividual genes emmot be deseribed as fitness. What is really important in determinimg fitmess are the phenotypic characteristios. These incoude genetic factors and Envjrommental factors of ofen the two canmot be partitioned and are represented as a montinuous wharewteristic.

Miguatory behavior generally is bedieved to have a strong genetic womponent. The rist of trampalanting stocks that are not adapted to the mew enviromment may be reduced survival (fititer, 1975) "Some stocksy however, survive the transfers well (eg. Chetwo fall whinook trancolant to the facskanime and the Fiogue chinoot tramsplant to the Big Greet Hatchery (Columbia Fiver)). Thereforey it is difficult to predict the success of trangfers.

The rationale behind the comcept that if transters are to occurn they should be wonfined to mearby lowelities is the fol howinga netivewhewhery wrosses have reduced survivaly this ascumes thet native stocks heve been programmed to survive im
these areas. Two problems exist with regard to this line of reasoming: generalizations cannot be made on the basis of existing scientificevidence and the "genetic purity" of mative coastal chinook stoces is not intact. The many transfers and straye during the past century probatly have diluted the "original" stomes integrity" Streying is not necessarily detrimental to wide populations if the population size is largen also, a mall amount of straying is believed to invigorate some populations (eng. heterosis) (Lannan, pers. comm,.

Gince hatchery practices are beyond the scope of this report, intreeding depression as it relates to hatchery fish will not be discussed. Native populations that have been isolated for many generations may experience an intomeeding depreseion if the population is small.

Development of a "superstock": concerns

The genetic risk of creating a "superstome" tannot be determined. However, it would be conservetive to assume that the creation of a coestal superstock (eng. Fogue chinook) would generady reduce the amount of genetic variation (diversity) in coastal chinook stocks over time. The resource should be managed to preserve some level of diversity in case of environmental changes. This assumes that by preserving the diversity we are making avajlable a broader mpectrum of genes to improve the fishes ability to adapt to alterations in the enviroment. While harc evichene does not exist that support this generalization, to categorically dismiss it would be unwise. The dilemats that if the resource js mameged so that some stocks become "extinct," the damege done would be jrreversible.

Superstocks may not be what is needed because they mi ght "load" a particular ocean area that may not be able to support the increase. For ewample, Fogue stoms tend to occupy loced Waters and their pattern of contribution apparentiy does not change much when they have been trensplanted. However" there is no hard evidence that ocean carrying capacity has been reached or thet transplanted fish mecessarily comtinue to follow their former migratory paterns.

A socioninstitutional consideration and a gemetit woncern is that introduced fish may breed with native fish and cause a charge in the migratory behavior or distribution of stocks from a particulam watershedn For example, if Fogue fish are released at the Trast Hatchery and a far number of fish etray eath year" over time some matings of introdumed and mative fien are bound to oceurn Assuming that these matings produme offspring thet return as spawners, then there $\mathrm{i} s$ the shight possibility that repeated matings would alter the overald maratory patemers of the omiginal gtoed. This would have political implicetions in that
the oross might contribute more to the oregon offohore fishery, but the important sport fishery that operwtes off Tillamook Eay might declinen This scenamio relies on many assumptions and possibilities thet cenmot be predicted by a genetic impact analyesis. Furthermorey the impact of introductions on the genetic "integrity" of the native fimh is lower when the population of matural spawners is high than when it is low, ceteris paribusn

Behavioral jnteractions of matchery and mative fish: interspecific competition amomg juveni $]$ es.

Statement Juvenile imteractions between hatchery and native fish indicate that hatchery fish are dominant.

Evjomen Becaume of their 1 arger size upon release from the hatchery, hatchery fish tend to mave a competitve advantage over
 decrease the density of wijd juvenides by 40 to wo\%n This is a concern of hetwher'y menegement prewticem.

Other studies show that hatehery fism tend to be domjnamt. Fendersom et: ad. (1968) foumd that when hatemery and wid d Atlantic walmon parp of the seme age and size competed in aguariag twite as many hatehery fish them widofish wtwanem gocial dominancen Glova (1970) foumd that hatwtery womo mad severe impacts on native como and wutworoat trout because they did not exhibit the "mormal" behavioral display that hatcomery fish use to setwle territoriad diewutwen

Interactioms betamen various selmonid species is on y brjefly reviewed: if supplementetion of widd fieh with matchery fish were to occur, these would be important considerations (Nicholas, et al= 1979) " These interactions might be signifiomat if enhancement or reprogramming efforts lead to an imorease in the number of natwhery strays.

When internewtoms octur betweem cotnoy whimoot; stemelhead and
 1.979: Nickelsom, 19BL) except in very warm water when whinoovempe dominant (Stein et al.y 1972).

The resulte from studies comoumted on the betaviorad interactions of mative amd hetwhery fish cunnot be used to mate gemeralizatioms about chimoot in various situationsn bike the genetics studiesy changes im the enviromment over time as well as chamges in the geme etrumture over time, prevent this informetion from being used as a predictive devicen Moreover, it presentiy is

and bemavior studies may be useful in providing inited informationg but until a comeeptumb framework has been developed, the information should not be extemode beyond its initial assumptions.

Life History strategies
Information on the life history strategies of various bregon coastal stowts is sporadic but can be used to develop some guidelines for stock transfer. The limiting factors of various coastal streams (e.g. high temperatures, low summer flows) might affect the success of imtroduced stocks in their new Enviromments. Alson 1 ife history strategies may be important if density dependent rel ationships are demonstrated.

Juvenile chinook from Oregon Coastal streams

Estuarine Fearjng

All of the coastal chimoob populations are wapable of being reared in the river or the estuary but some stocres spend less time in the river because the mabitat is mot sujtablea The Nehalem stocts rear in both the estuary and the river even though the river is werm in the summer. The Fogue has a Inmited estuary! in turn, most juvenile rearing occurs in the river.

Within the estuaries there are varietions in the size of fjsh and the abumamce of fish "the abundance of fish is usually a reflection of stocting retes. High wild whinoot: stocting rates are found in the Siletz, Nestutwa, Woquille, and Galmon fivers. Low wild chinoot wtowking reates ocemp in the Yaquinag moos,

Migration to the EEtuar"y

Migration to the estuary owwurs rapidyy in late May to early wume, and then decinmes throughout the summer to early fall. In the sjusiaw, mowt wminook heave freashwaterm by mid-july and rear in the estuary Juvenjisw remain in the gilets and Nestucma Fivers through the surnmer (water temperetures are low). In the
 greater exterty them whimoot from the kilmhis, Mami and Tillamoot: Fivers (J. Nicholas, pers, comm,

Wigration to the Gnean
The study coriducted by Fieimers anc Downey (1.9日2) on the Sixes River provides the "model" for studying migretions of juvenile mhinoot to the ocemn, However", the mpplinability of this model to other coastal streams has not been demonetrated.

Fiejmwte and Downey (J9日2) used swale wtucjes to determime that widd fish that survive to become adults leave the estuary in
 before mmal. er fish remouting in a contimuoms departure to the
 bold, which would trigger a movement of 1 erger fish to the ocean. A previous study conducted om the salmon Fiver found that early releases survived better than later releases however, the results werm insemsitive to the proportion of jewts in the total. number of adults recovered (Ni wholes, pers. comm,

Variations in Tolerence levele of various stocts
Ohinook stacts vary in their tolerance to high temperetures arm low flows. For Exempley Nestucca or Siletz fish would survive poorly in the warmer waters of the Nehalem Fiver (J. Nicholas, pers. womm." Alsw, certain stoctseare more resistant to disease than other wtocksn The transfer of Trast fish to the Netnalem resulted jn low survjvala this was poseibly due to their susceptibility to Eeretomyxa shasta. Chimook from the Nehalem are believed wo be resietant to eeretomyxa McGie. pers. comm, : Tolerames inmitatioms also appyy to adult mhimookn

Acult Ethinook:

Fum Timing
 Filk sixes and Chetco Fiver stocts return latey most Elt and Sixes River chirocor return from November to Jamuery while most of the Ghetro Fiver mhinoot return from Owtober to November. The Coquilue fall whimoot are similiar to other coastal fald chinoot: i." that the weak returns occur in ortober. Hatchery practuces Have influerned the timing of the rum for mome hatchery stocts generaljy, hatohery runc are more compressed. ocean and air temperature may admo jnflumme rum timing (Eurgner, j.980).

Maturation rates and external Gharacteristice

Elk amd Chetco fall chimoot often are referred to as high quality wright fish (3. Niwholasy pers. comm.) " "he reasons for varidutoms in brightmese are mot seientifically uncerstomot. The size of the tidal area mad the rete of maturation may be i mportant fawtors. For exemple, the Goquille Fiver ham en omg ti del area. Darb fish ("tules") have been caught there that are immature adulte (not ready to spewn). In the Elk Fiver, where the estuary is megligibley the fall chinook spawn quickly after migration jnto freshwater-momefictm spawn within the lower js miles.

Age at return
The age at retumrif various coestal stocts js not well documented. Variations exist between stocts and within stocks (e.g. fich from different brood years). Survival to wetch wnd escapement deta provide some indication of the age of return. However, the informetion bese je extrmemely emall and very littie Gan be said about the gemernl behavior of the coastal stocrs
 to the hatchery, Jn the Fiby returms to the hatohery have been
 practices as well as the fisheries influmem whe watch to
 have watem a specific number of foge. The size at and time of release also affect the number of fish that surviven For example, it is believed that with later releases, more $4-$ and $5-y e a r$ oldes return. Consequently, age at return might be genexically mediated but environmentally modified. Estimating the various cateh to escapement (C / E) rutios of the coastal chimook stocks js considered beyond the seope of this reporty however, some Estimates have bewn determined by Gerrison (1981 and 1984) "The G/E ratio of fall whimook is believed to be higher than that of
 and Garrisson, pers. comm.).

Carrying mapamity and demeity depmonemweronsiderations

Limited cerrying capacity in whe wewan as it pertains to the survivel amd abumemem of chimook selmon mes mot bem demonstrated. Thet tha declime in wohe poujations is due to 1. mitetions of the omean enviromment currently is debated. The ecological relatiomships between survival of juvend le como and

19日1: Nictelsom, 198E) , In the wase of chinook sadmon, the scenario is differenta Coastal fall chinook populations are not declining. MEGie (1981) found thet Escapement of fall chinook hes incmeased at approximately 3% year simce 1950 , Therefore, it would be extremely difficult to support an argument that these stocks are limited due to the ocean enviromment.

Furthermore, beweuse there is no ofl (Oreqon Froduction (nctex) area for chinook, the effects of poor upwelling on chinoot:
 salmon are thought to migrete farther distances amd to be more widely dietributed in the maean than cotoon in turna the concentration of 1 arge nubere of chinook in poor ocean feeding grounds $i s$ not likely , However", studies need to be conducted to determine the migretory behavior of youmg minoot from oregon comstal stremme before any wonclusions wan be drawn.

It is not clear how density-dependent mechanisms regulate fistr populations withim the marrying wapanjty jomiseof m particular body of water. Factors such as increasing competitor" populations (engn pint: and chum salmom), increasimg predetor populations (eng. marine mammals and birdu) and disease problems probably influence the survival of whinook in the ocean
(Feterman, 1980). However, it would be difficult to show that increesing the number of chinoot smolts (exgn through enhancement efforts) would drive the population down the rightside of the stock-recruitment curve because reliable stoct:recruitment curves for the various coastal chimook stocks have not been developed. Few stomerrecruitment curves exist for any chinook stocts or groups of stombs and it is uncertein whether these wurves would be applicmble to the Gregon wosetad stocke SWorlund, et al. 1969 Fieisembiemler and McIntyre, undated:

Density dependent relationships within river systems may occur if hatehery fish do not leave the hatcheries to migrete directiy to the estuaries (or omean) or from stray hatehery adults Demeity dependent and density jnomendent relationslims have been shown to occur between abundance and survival of galmon in the rivers. The Ficeker cumven, a clensity-dependent modely is based on the assumption that smolt procuction decreases after currying wapacity is reached amd that high stombjmg rates can result in reduced production (Ficker, 197e) "The Beaverton Holt relationstip is a density-ingepencemt mocel thet assumes mmelt productiom does mot decrease after carrying wapacity is reached.
 fishn It i \quad believed that eggonanting follows whis type of moctel (Thomas, 1.77E).

If wmolts released frem them hatwhery oo direwty to the ocean, there would be dittle womcern over cerrying cipacity problems with juvemile fist in the riveren Froblemer result when hatemery juveniles stray upriver or stay dn therjvers for Entended periocte of timen This is directuy related to hetemery management practices, genetio programming of the stoctsis and the
lowation of the hatchery, fectuced interactions between mative amo hatwhery fish would be expected from hatchery fish rejeased from latcheries situated wase wo the womst.

Dersitey deperident rewationehips have been found to oceur when prewsmolt coho are planted (Masom, 1974 and 19750 Marting 1982). Mortelity and migretion reculate population density (Morterseri, 1977 :and Martin, 19Q2) "Dencity is also regulated through hatitet and territorial interections" Juvenile hatchery fish have been found to have a competitive advantage over wild

 early (possibly due to high population densjty jn the river) generally do mot survive to become adulte (fodgers, pers. comm.) "

Density depemdemme methenisms may alem otwur when adults return to spawn: for example, redd muperimposition ig believed to follow a Fimber-type model. Limjted overwinter hatitat. gummer rearing space and spawning habitat may result in reduced productionn However, this would deperid on the inmations of the particular system. Some models exist for exploring carrying
 Andersony 19日4), but these are not reviewed in this report. MEGie (perss. Female fall chinook per mile of coastal stream for sTEF (the Galmon and Trout Enhancement Frogram stocting EuidelineEu

Freliminary review of chinoot transplants to oregon coastal streems

Lhimoot Ealmon have been tramsferred many times and to many streams and rivers in oregon since the turn of the cemtury (Appendix E-w.1). They have been transplanted as eggsa fry and
 B-4 and E-w). How well these transplants survived iss rote well dombmentere Comsequently, it is impossible to kmow whether the transphante lived to reproduce and whether the offepring from introduced and mative matinge survived.

Whthout intommation regarding the sumbess of these transplamts, in terms of the "reproductive fitness" of the crosees (see Genetic: Consicerations) there ere problems in defining:

1. the "genetic: purity" of wild stocts (Apperdix E-1. 2)"

In the comtribution ot wild stock: to the offshome fistreries. If offsprimg from mrosses survived, some alterations in miguatory betiavior might have occurred. However, very 1 ittie tagging or markimg infommetwon je avajlable om the comtritution of mon-hatchery fishn so this problem Gammot be examimed.

Legend: 1. Columbia River fall chịnook
2. Columbia River spring chinook
3. Willamette River fall clinook
4. Willamette River spring clinook
j. Alsea lijver fall chinook
6. Coos kiver fall chinook
7. Coos River spring chinook
8. Chetco River fall chinook
9. Elk River fall chinook
10. Nestucca River fall chinook
11. Nestucca River spring chinook
12. Rogue River fall chinook
13. Rogue River spring chinook

12/|3. Rogue River chinook
14. Trask River fall chinook
15. Trask River spring chinook
16. Umpqua River spring chinook
17. Univ, of Washington cross, fall chinook
from: Wallis, 1962, 1963, 1964; McGie, 1980; Garrison, 1981.

Figure 2. Schematic representation of transplants of chinook to Oregon coastal hatcheries and streams, 1906 to 1982.
lowation of the hatehery. fectuced interactions between native and hatehery fish would be expected from hetwhery fish released from hatcheries situated wiose to the eoast.

Density deperdent red ationshipe have been found to ocwur when prewsmolt coho are planted (Masony 1.774 and 1975 Martin, 1982). Mortality and migration regulate population density (Mortensen, 1977 and Martim, 1982). Density is also regulated through habitat and termitorial interactions. Juvenile hatehery fish have been found to have a competitive advantage over wild
 1978). In 5 (xes estuary, finaller fish that enter the estuary early (possibly due to high population density in the river) generally do mot survive to become adults (Fodgers, pers. comm.) "

Density dependence mectianisme may also octur when adults return to spawn: for enample, rect superimposition is believed to follow a Ficker-type model, Limited overwinter habitat, summer rearing space and spawning habitat may result in reduced productionn However", this would depend on the limitations of the particular system. Gome models exist for exploring carrying cepacity inimations (kelly, et aln, 1982. McIntyme, 1983: and Anderson, 1984), but these are not reviewed in this report. Mogie (per"s. fomm.) presentiy is investigating the optimum seeding of female fall chinook per mile of coastal stream for STEF (the Balmon and Trout Enhancement Frogram) stocking Guidelines.

Freliminary review of chinook transplants to Oregon coastal stremems

Chinook salmon have been transferred many times and to many streans and rivers in oregon since the turn of the century (Appendix E-1.1). They have been treamplanted as eggen fry and firgerdings to coastal hatcheries and streams <figure zy Appendix B-4 and B-5). How well these transplants survived is not well documented. Consequently, it is impossible to know whether the transplants lived to reproduce and whether the offepring from introduced and mative matings survived.

Without information regarding the success of these transplats, in terms of the "reproductive fitness" of the crosess (see Genetic Considerations), there are problems in defining:

1. the "genetic purity" of wild stocts (Appendix E-1.2.2):
2. the contribution of wild stocks to the offshome fisheries. If offepring from crosses survived, some alterations in migratory behavior might have occurred. However, very littie tagging or marsing information is availatie on the contribution of mon-hatwhery fish, so this problem cannot be examined.

YOU CAN HELP SALMON

gon's coastal -and steelhead and cutthroat trout-can be saved! Land owners and managers play an important part in this effort. Whether your land covers hundreds of acres or a residential lot in town, you can help. The first way is by simply being aware of your place in the watershed and of your local fish runs. The second way is to help provide the habitat conditions the fish need. Here are a few helpful tips for different kinds of landowners

FOREST OPERATIONS

- Protect streamside trees and other vegetation at least consistent with the Oregon Forest Practices Act requirements.
- Leave good natural features, such as a beaver features, such as a beaver nel, alone. These are nel, alone. These are
important rearing areas for fish.
- Check areas where your roads cross streams. If you culverts have a drop or are above the stream channel fish passage. Consider
redesigning problem culverts or replacing them completely with a bridge structure.

AGRICULTURAL BUSINESSES

Create streamside (riparian) pastures that can ee managed for grazing during times when livestock will prefer pasture grasses ver riparian trees and shrubs. Provide a trough or watering tank away from he stream.

- Plant willows or other hrubs and trees along your waterways. They help stabilize the banks, filter out sediments from runoff, and provide cooling shade.
- If riparian pastures are not viable options for your peration, consider using encing to keep animals away from the water's edge

Protect wetlands, rivers, and estuaries through careful animal waste management and from the ffects of poor fertilizer or herbicide application.

LAND DEVELOPERS, HOMEOWNERS, BUSINESSES

- While state and federal law may allow filling wetlands or estuaries (with the proper review and permits), loss of such habitat pan harm fish Consider options that preserve thes habitats

Construction can cause serious sediment problems even well away from a waterway, if storm-wate runoff is not properly contained. Although smaller operations may not need permits, they still can have significant impacts. Check with the state Department of Environmental Quality or ocal construction companies about responsible runo management at your site
If possible, homeowners and businesses should connect to a sewage treatment and disposal facility. Poorly performing septic tanks can contaminate groundwater and nearby streams, lakes, and bays. If you must use a septic tank, be certain it is properly designed, located, and maintained.

- Dispose of household chemicals such as used motor oil, antifreeze, pesticides, and paints at approved collection facilities in your area.

For more information other For more information-other
publications about coho and publications about coho
watersheds, contacts at organizations and agencies see the insert page.

Oregon Sea Grant appreciates the editorial review, assistance, and graphics provided by the Governor's Watershed Enhancement Board, the Oregon Department of Department of Fish and
Deplat Wildife, For the Sake of the Salmon, and the Pacific Rivers Council.

Ne: Nidin

 This publication is funded byOregon Sea Grant through NOAA Office of Sea Grant and Extramural programs, U.S. Department of Commerce, under grant no. NA36RG0451, project
no. M/A-12. Oregon Sea Grat is no. M/A-12. Oregon Sea Grant is
based at, and receives additional bapeo at, and rom, Oregon State University, a Land Grant, Sea Grant, and Space Grant institution funded in part by the Oregon Legislature.

Sea Grant combines basic research, education, and technology transfer to serve the public. This national network
universities works with others in the private and public sectors to meet the changing environmental, economic, and social needs of people in the coastal, ocean, and ORESU-G-97-003

OREGON COASTAI WATERSHED

Сонo Salmon: Life in the Watershed

from Cape Blanco south to Punta Gorda. Meanwhile NMFS placed the population north of Cape Blanco to the Columbia River on a "candidate list" and agreed to let Oregon attempt to recover Oregon coho according to a plan developed by state agencies, working with local groups. The goal of this Oregon plan is not merely to prevent the extinction of coho salmon in the coastal region, but to restore salmon populations.
Efforts to restore salmon must focus on improving the fish's habitat in the watersheds it lives in, along with addressing other factors of its decline, such as harvest and hatchery ffects on the species. Coastal residents have a critical role to play in improving fish habitat in watersheds. Improving watersheds can not only help prevent the extinction of species, but also provide benefts to individuals and communities in terms of ality and antity
This publication is esigned to help readers ally important how when, nd where coho salmon, in watersheds and what oople co to help.

The Oregon coast's most important producers of wild coho salmo are the Nehalem, Nestucca, Siletz, Alsea, Siuslaw, Umpqua, Coos Siltcoos, Tahkenitch, and Tenmile Lakes (on the central coast).

MORE ABOUT COHO SALMON

Coho Salmon Briefing Package. National Marine Fisheries Service. 1997. Packet of materials relating to NMFS decisions about Oregon coho in April 1997. See NMFS listing under Organizations.

Field Guide to the Pacific Salmon. Robert Steelquist. Seattle: Sasquatch Books, 1992. 64 pages. Partial proceeds from the guide's sale (\$5.95) go to the Adopt-A-Stream Foundation.

Pacific Salmon Life Histories. C. Groot and L. Margolis, editors. Vancouver, B.C.: University of British Columbia Press, 1991. 608 pages. The standard reference work, available in larger libraries.

Oregon Department of Fish \& Wildlife publications are available from the department's Information Services office: 2501 SW First Ave., Portland, OR 97207; 503-872-5264, ext. 5356. All listed below, except Stream Scene curriculum, are free:
Oregon's Migratory Fish Species. Leaflet.
Oregon's Threatened and Endangered Species.
Leaflet.
Stream Care. A Salmon/ Trout Enhancement Program (STEP) publication.

Fish Restoration and Enhancement and STEP

 Newsletter. About ODFW programs.

Adult coho (scientific name, Oncorhynchus kisutch) are distinguished from other Pacific salmon by the presence of small black spots on their backs and the upper lobe of their tails.

ODFW "Backgrounders":

- What You Can Do to Help Salmon Restoration Where You Live and Work
- Coho Salmon
- Oregon's Coastal Salmon and Trout
- Oregon's Wild Fish Management Policy
- Instream Water Rights
- Fish Screening
- The Stream Scene. Watersheds, Wildlife and People. 300 pages, $\$ 15$. A curriculum package for watershed awareness.

MORE ABOUT WATERSHEDS

A Watershed Assessment Primer. F. D. Euphrat and B. P. Warkentin. U.S. Environmental Protection Agency, 1994. 270 pages. Available from USEPA, Region 10, 1200 Sixth Avenue, WD-139, Seattle, WA 98101, or call 1-800-490-9198 (Document EPA 910/B-94-005). Free (if in stock).

Healing the Watershed workbook series. Includes A Guide to the Restoration of Watersheds and Native Fish in the Pacific Northwest, and A Citizen's Guide to Funding Watershed and Wild Salmon Recovery Programs. The Pacific Rivers Council, Inc. Available from Pacific Rivers Council, P.O. Box 10798, Eugene OR $97440 . \$ 15$ per book. To order, call 541-345-0119.

A Guide to Placing Large Wood in Streams and Forest Practices Notes Series. Available from Oregon Department of Forestry, Forest Practices Section, 2600 State Street, Salem, OR 97310. Free. To order, call 503-945-7470.

The Return of the SalmonRestoring the Fish to Rivers and Watersheds. Thirtyminute video produced by Oregon Sea Grant. Sea Grant Communications, A402 Kerr Administration, Oregon State University, Corvallis, OR 97331. \$30. To order, call 1-800-3759360.

The Streamkeeper's Field Guide: Watershed Inventory and Stream Monitoring Methods. Thomas Murdoch, Martha Cheo and Kate O'Laughlin. Adopt-AStream Foundation, 600 128th St. SE, Everett, WA 98208.310 pages. $\$ 29.95+$ shipping. To order, call 206-316-8592.

ORGANIZATIONS, INSTITUTIONS, AND PROGRAMS

Note: A large amount of additional information is available about salmon and watersheds on the World Wide Web. A sampling of sites is presented below along with other organization information, but users should recognize that the content of sites and their addresses often change.
Adopt-A-Stream
Foundation
600 128th St. SE
Everett, WA 98208
206-316-8592
Fish Restoration and
Enhancement Program
Oregon Department of
Fish \& Wildlife
PO Box 59
Portland, OR 97207
503-872-5252 ext. 5429

For the Sake of the Salmon 45 SE 82nd Dr. Suite 100
Gladstone, OR 97027
503-650-5447
Fax 503-650-5410
www.4sos.org/
Oregon Sea Grant: Extension Sea Grant Program
Hatfield Marine Science Center
2030 S. Marine Science Dr.
Newport, OR 97365
541-867-0368
seagrant.orst.edu
Oregon State University Extension Service
Publication Orders
Extension \& Station
Communications
OSU
422 Kerr Administration
Corvallis, OR 97331-2119
541-737-2513
www.agcomm.ads.orst.edu/
Partners for Wildlife Program
Pat Wright or Maureen Smith
US Fish \& Wildlife Service
2600 SE 98th Avenue
Suite 100
Portland, OR 97266
503-231-6179

RELATED
 MANAGEMENT AGENCIES

Governor's Watershed Enhancement Board 255 Capitol St. NE
Salem, OR 97310
503-378-3589, Ext. 831
Fax: (503) 378-3225
National Marine Fisheries Service
Enviro. \& Tech. Services
525 NE Oregon St.
\#500
Portland, OR 97232
503-230-5400
kingfish.ssp.nmfs.gov/

Juvenile coho are identified by long, narrow, widely spaced "parr" marks and the long leading edge of the anal fin (on the fish's rear underside).

COHO IN DECLINE

The number of spawning salmon per stream mile has fallen dramatically since the 1960 s .

Source: Oregon Department of Fish and Wildlife.
Figures are adjusted to pre-harvest levels.

Oregon Department of
Agriculture
635 Capitol St. NE
Salem, OR 97310
www.oda.state.or.us
Oregon Department of Environmental Quality 811 SW Sixth Avenue
Portland, OR 97204
1-800-452-4011
www.deq.state.or.us
Oregon Department of Fish \& Wildlife
2501 SW First Avenue
PO Box 59
Portland, OR 97207
503-872-5310
www.dfw.state.or.us

Oregon Department of
Forestry, Forest Practices
Program
503-945-7470 or contact
local Forestry offices
www.odf.state.or.us
US Environmental
Protection Agency
Watershed Branch
200 SW 35th
Corvallis, OR 97331
541-754-4389

For more information

and for details on your
local site, contact your local soil and water conservation district or watershed council, or a listed organization.
\% "stocts" as they are referred to in electrophoretic studjes. Ficter (1972) defines stocke as "the fjsh spawning in a particular lake or stream (or portion of it 〕 at a particular Eeasom, whichanto a substantial degree do mot imterbreed with any group spawning in a different place, or in the same place at a cifferent season." Eecause of the greet mumber of transplents throughout mistory, it is reasomable to assume that some of the offeprimg from introduced and native crosses didsurvive to reproduce. Therefore, the essumption that the Oregon constal efinook stombs are discrete je djfficult to justify amd in turng, the stowts annot be so meatly delineated on the besje of Electrophoretic enelysis.

Two aspectsof stoct transfers are examined: 1. How well do stombs that are transplanted survive in other areas and, 2. whem a stomb is tremsfermed, does its pathern of contribution changen

Few studies have been comducted in Oregon that provide information on survival and montributiom of tramsplantad coastal chinook stocts.

The Oregon Department of Fish and Windidfetransplanted Trask Eil: and Cheteo fall whinoot: of EY 197 E and 1974 to other coastel streams (tatie 4) Megie (19go) reports that all of the control groups (e.g. Elk stock released in the Elt Fiver) produmer 1 arger watches then cohorts released in other streams. The Cheteo fish survived well in other streams, especially those trensferred to the kilastanine Hatchery, although their survivel was lower than the comtrol group. The Chetco chinook continued to contribute heavidy to the Oregon offshore fishery but Magje (1980) notes that "there was a tendency for trensplanted fish to contribute more fish to the nomthern fisheries them [cdid] the control group at Chetco Fiver"" "The changes in the pattern of contribution of Emt fish could not be analy yed because of the low survival of the tranplanted fish.

Am ofjective of the transfer of Trast and Chetcofish to the Filaskamine was to see if whese stocts would contribute to the 1 ower Columbia Fiver and Young's Eay gill net fjeheries (Mogie, 1930) " Chetco figh were not eaught while Trast: fish were. Differemces in the pum timag between tote two stowke might acoount for this distinction. For Example, Ghetco fall chinook: migrated upetream to spawn in late fall a ater the gild met fishery had chosed while "hrast fish returned during the gill met seasom.

This stury was diseontimued beceuse of the outbreat of IHNV in the Elf amo Chetco chimook (they could no lomger be transferred)" Some of the resulte (eng" survivaj) may have been influenced by the disease. Furthermore, the opportumity to rectover fish with fin marnse wag low after 197 s when recovery efforts focused on woded wire tags.

Fogue whinoot of EY 1982 and 198 were traneferred to the Gig Creek Hatchery on the Columbia Fiver" Freliminary

Table 4. Transplants of E1k, Chetco, and Trask River chinook of brood years 1973 and 1974.

Stock	$\begin{gathered} \text { Release } \\ \text { site } \\ \hline \end{gathered}$		Date released	$\begin{gathered} \hline \text { Size } \\ (g) \\ \hline \end{gathered}$	Mark	Number released
1973 brood year (1iberated in 1974)						
Trask	Trask R.		11/01	54	$07 \times 10 / 10^{\text {a }}$	36,519
Trask	Alsea Ro		10/31	39	07-10/11	38,883
Elk	Alsea R.		10/31	46	07-10/12	38,030
Elk	Elk R		11/01	45	07-10/13	39,660
Elk	Coos Bay		10/23-28	43	$\mathrm{Ad}=\mathrm{RV}{ }^{\text {b }}$	109,985
Chetco	Coos Bay		10/23-28	43	Ad-LV	99,609
Total						362,686
1974 brood year (1iberated in 1975)						
Elk	Coos Bay		10/20-21	41	07-11/09	26,307
Chetco	Coos Bay		10/21	42	07-11/10	23.616
Trask	Klaskanine	R.	11/21	48	07-11/11	30,550
Chetco	Klaskanine		11/21	48	07-11/12	34,620
Trask	Trask R		10/22	45	07-11/13	38,233
Trask	Alsea R.		10/21	46	07-11/14	25,578
Eik	Alsea R.		10/21	45	07-11/15	32,538
Elk	Elk R.		10/20	41	07-12/09	35,825
Chetco	Chetco R.		11/18-20	46	07-12/10	39,150
Total						286,417

a coded wire tag
$b_{\text {Fin mark }}$

From: McGie, 1980, p. 4.
information, based on the catch of one and two-year olds indicetes that Fogue fish have survived well. Feturns of jacks in 1984 of By 1992 were highn however, this cammot mewessarily be used as an indicetor of how well other year classes wid surviven Recent information (May 20 to Jume 2, 1985) from the troll catery shows that chinook from the Foguew iog Creek release ere being caught in melatively great numbers off the Oregom Coastn Information from other fisheries has not yet been tabulatedy therefore, an estimate of contribution to the offshore fisheries cannot be made at this timen

Concerns regarding Feprogramming Efforts

1. The gemetic" rists ascociated with tramsferring stocts canmot be predicted with accuracy or reliability (refer to Genetic Comsjderations): However" comservative mamegement dictates that. tominimize gemetic problems transplanted stoct: should mave simjlar genetic. "backegrouncts" as native stocks. The genetic problems that may result from the developent of a "superstocf" have been reviewed previously,
2. The life history strategies of coastal chinoot stocks as well as the emvirommental 1 imitetions of some coestal systems will influence the outcome of a reprogramming fefort (refer to bife History Stretegies). For Example, if Fogue spring stocks are transplanted, the chamces that they will successfully mate with the wild fistifrom most coastal streams js low: in general. mative spring stocts enter the system dater and spawn later. Fogue fall chinoot have a higher probability of breeding with metive whinook. If it were mot for the higher comtribution to the offshore fishery of fall chimoot than of spring chinoot; spring chinook would be the stock of choice (J. Martin, pers. comm.). This illustrates some of the trade-offs that must be considered if stocks are to be transferred.

Bn Fimally, ODFW Etocking policy for the Oregom Eoastal streams may prevent some of these stocks from being transferred to areas that: are mameged primerily for wild stombs or other species (Appendix E-2).

Concerns regarding enthancement efforts
Increasing the number of fish released tan be viewed in two ways: 1. Tncreesing the number of fish rejeased from hatcheries with stocts that do not comtribute heavily to the oregor offshore fishery and wn Tmereasjng the number of fish released from hatcheries that have stomes that do contribute to the local offehomefishery.

Increasing the releases of stocks that do not contribute heavily to the oregon offshore fishery

This would involve primarily the Northern coastal stocks. These stocks contribute relatively little to the bregon offshore fishery and would mostly be caught by the northern fisheries. By increasing the number of fish released it: is reasonable to assume thet the numbers of fish ceught will increase al though the proportion of eatch in the various coastal fisheries would remain the same, ceteris paribus. The trade off between numbere releaced and numbers ceught ultimately is an economic question. An economic feasibilty analysis would porove an indication of the cost effectiveness of increasing the releasess of northern coastal stocks. For the purpose of illustration, if 100 fish are released of a stock that contributes 5o\% to the Oregon fishery, one fish would be caught in the oregon offshore fishery. If 1000 fish of a stock that contributes 10% are released, two fish would be caught in the oregon offshome fishery. frn both wases, suvivell to catch is assumed to be 2% Therefore, the mumbers released as well as contribution must be weighed in order to determine the benefits and costs of enmancement efforts. Before an economic analysis is done, however, the following biologital and fisheries management concerns of the nomthern coastal stocts need to be evaluated.

1. Northern stocks migrate morth and utilize the richer feeding grounds of the northern waters. There presentily is controversy regarding the productivity of the ocean off Oregon. That carrying capacity has been reached for chinook is not established; however gensjty dependence mechenisms may act at a level of increased releases (as yet undetermined) that would reduce survival (and/or growth). Conservative management strategies would guard against the creation of another coho scenario with chinook.
2. Northern stocks are abundant and escapement is fairly high.
3. The following northern stocks have had surplus eggs (to 1962): Treak spring and fall: Nestucca spring and fall: and the Salmon River fall chinook. The egg status of these stocks after 1982 was not evaluated (Appendi: $\mathrm{B}-\mathrm{Z}$).
4. Northern stocks are not affected by the IHN virus.

Ei. The Canadian Treaty is expected to improve the contribution of Nor thern stocks to the Oregon fishery however, it will not greetly alter the contribution of the southern stocts (Marting pers. comm.).

Increasimg the relamse of stowks that do comtribute to the oregon offshore +ishery

If the tremos of wontributjon do mot whemge as a result of entamement effortsy more fish would we avadiabe to the fregon offehore fishery if more fish are released from the southern matcheries "However, some points to comsider about the southern

1. Few southern stomss are known to contribute to the Oregon offshore fishery and of these, one is affected by IHNV (the
 the Elf generally does not contribute as heavily to the oregon fishery as the chetcon Furthermore, the development of an $\operatorname{lH} H=$ free stomb is hot expected to oceur in the mear future (Groberg, persa cumma)
2. Bouthern stocts have been depressed in past few years but recent jutormation on 1985 catch and escapement indicates that these stocts are rewuperatingn

E" Very 1 ittie information $i s$ avad able on the mative southern stocts hencen jt would be extremely difficult torecommemo a "马afe level of increased releases."
4. Egos have bewn avainable in the past (up to tyaz) from the following stocks Umpqua spring: Fogue sprimg and Cheteo fall. Fecent informatiom on the mag status of these stowks has mot bem r"eviewedu The STEF program tates egge from many of these wouthern stocks (Appendix B-as)n
5. Fogue chimoot are already relewsed from various [omastal hatcheries. lnciensing the release of Fogue stoctemight generate concerms about gemetice risws as well as carryimg cupacioyo

Summary of Gemerah Gomexms Governimg Enmancement
Befor"e a "gafe level of incw"eased redeases" can be determined, imformation on the following topios needs to be gathered and amelyaned:

1. The status of the metive mhimook stocts found in Oregom coastal stimeams. The management of a mixed fishery (i. e. harvestimg mative and thatemery figh deremos on aweurate and reliable information on the cotch and escapement of wild fish. A mixed stock harvest scemerio might have lomg term genewic:
 from the sacramento Easim wam withetand a harvest rate of EOmgo\% while wild stocts can support a rate of bo\% (or lower). Alson
limited tmow]edge $i=a v a i$ labe on the stoct recrubment reletionchipefor the comstal stocts, matimg short term management decisions (e,gn setwing harvest rates and releame jevelss difficult.

2n Cemrying cepecity and densjty dependencen Fresently, these are mbetorical qusetions that canmot be supported by empirical. Evj dencen However", these are momcerms that, if verjfjation, would impose severe limitations on entancement efforts.
 productiom of wild fish amo their life history stretegies may influence the extent of the megative effect hatchery streys woul o have on native fish stocks. Thereasing the number of hatchery fish releaged gemerally resulte in tijgher numbers of strays. It is beldeved that hetwhery fish stimy more than wild fishe and in somer ruers there iss a high percentage of strays. For exemplen strays from the Elt River to the sixes Fiver can be ashigh as
 genetic concern and whould be considered as a potential riskn

1. F゙mow] wde on the womtribution mf oregon womstel whinoot to the Oregon offshome fishery is foundec primarily on rewent coded wire teg Etudies, Historical studies wontajn many diewrepamcjes whicth limit their use in evaluatimg wontributjom, The oregon stock that tend to comtribute tamajy to the Oregom offshome fishery ate the Umpqua wprimg chinooky the Fogue mpring and fal chinootig and the Chetwo fall whinoota The EJk fall chinook alwo contribute to the Oregon fishery. This may be beceuse of the extended troll Season off the Elb: Fiver"
2. The distritution of the comstad chimook stomes om the migh seas is mot well wnoerstood, Migratory patterns are believed to be geneticeldy determined but are alco influfnced by envirommental. factors. Chimook are widely dispersed in the oceanmmore so than other celmonids because of thedr complex jute historiesn They have also been caught in deeper waters than other selmonids. Chimoot from both the morthern and southern Dregon woattal streams have bexn cunght off the Aleutians Islands, which are rjath feedimg grounds.

Zn The abumance of the comstal chirnoots stocte was difficult to ascertain due to the 1 imitations of the jnformation base and the time restrictions of this study. Apparemtly, the escapement of native fall mhinook from Oregon woastal streans has increased at. approximately ए, per year since jogos This treme, however, appears to be slowing down. Both the northern and the southern cosettal stoctes have beer imereesing although in the pest two years t the gouthern stombs experienced a declinen This was presumatiy coused by the warm ocean currente of the El Nino. Fecent data indicate that the southern stowts may be improving: 19вs dem counts on the Foque and Umpqua rivers are exceptiomally nigh.
4. Two southern stowts, the EJf: and the Chetwo, are quaramtined due to rHN virus (they cammot be transferred to other Eystems). An JHN-free stoct is mot expected to be developed in the near futume, Fecently, IHN was isolated from Columbia River mbinook: and mildions of egge had to be destroyed at the Eommevilue Hatchery. This has severe implicatioms for" management. ODFW policy protibite the tranefer of chimoot from the Columbiaw Willamette Easin to any of the Oregon woastal systems. Non-viral disemses are found in all of the constal hatcheries but treatment is available for most of these diseases and the stocts are not quar antimed.
E. The genetic rists associated with reprogramming or entamamemt efforts are not predicteble becemse of the sejentjfit uncertainity of predicting the emvironment "However, conservative management dictates that it $\dot{\cos }$ wise to preserve some degree of genetic diversity in come of future disturbences. Furthermore, fewer megetive impacts are believed wo ocenf if stocts are

Gn Intermetoms between native and maternery juvenjase are thought to favor hatchery fish. This might disturb the normal population mechamisms of the mative stombs im stmeams where hatcheries are located. However, generalizations cannot be drawn from the s"ientifice eviclence on various beheviorel interactionsn
7. The m fe history strategies of the coastal chinook stocts are veried. Some importent factore to wonsider for juveniles are the wimimg of migration to the estuary and to the ocean, time spent rearing in freshmater and in the estuary, and tolerance to environmentel. pressures (eug high water temperatures and low
 rum must be considered. t is believed that Nehadem chinook have a greater toler ance for high temperatwres than ohjnoot from the Nestumea or the Giletz Fivers. In generalg the southerm coastal stomts return later than the northern stombs (partiadyy redated to flows and temperature) "Tme limitations of the system (eng: a
 reprogramming efforts.
E. Limitwed carrying mapecity jn the ocean as it pertaime tothe survival of chinoot has not been demonstrated, especially since ctimoot storks are apperemtly healthy" Density dependent redationships within river systems, however, may oncum if hetwhery juvemiles and adults etrayn This depends on the lonetion of the hatemery, the hetumery management practices, the amount of strays, and the density of widd fistim therivern Competition for rearimg hatitat, overwintering hatitate and spamming habjtat (to mame a few) would generally result in rechued prochution if density dependent mewhanismes are present.
7. Chimook salmon have been tramsplanted many times and to many coastad hatcherjes since the turn of the mentury. From 1 ofo to 1960, Eonmeville Hatchery tranferred chimoot (of crolumbja and Wi.l amette stock) directly to the Adsea, Coos, Coquille, Siuslaw, Yaquina, Trest: Nestucka, Nehalem, Foquen Sileta and Umpqua Fivers or to hatoheries on these rivers. This represents only one of mawy hatcherjes that transferred chinoot to oregom coastad. streams. Many moastal chinook stocks have also been transferred to the Columbia fiverrn However, limited imformation ies aveil. able on the survival of these transfers. Two recent studies provide some indication of the survival and contribution of a few oregon woastal stocks. According to a study conducted with Elk, wheteo and Trest: stocks (brood years 197 s and 1974), the Elt: survived the transfer worst and the Chetco sumvivecthe besta None of the trensferred group survived ae well as their cohortw that hed been released in their natal streams. The pattern of montribution of
 substantially, although a slight mortherm shift was moted. very rewent informetion Euggeste that the Fogue whinook release (brood year 1902 at the Eig Creet: Hatwery, Golumbje Fiver", is
 contribution to the offshore fishery is avainatule yet.

In womwusion, further study is recommended before reprograming or emtormamemte efforts are initiated with bregon世oestal ehinook stomes. More intormation is required on various aspects of the southern coastal hatehery and widdetocts. Once tris: information is availableg a biologicaly oriented femsitidity study would be able to recommend stowts that would be suitable mandidates for transter or Enhamement. However" it is doubtful that definitive answers regarding the issues of genetic risms amd carrying capacity could be provided.

Fiecommendatiomefor Further study

1. The feasibility of emhamememt in terms of rexeasing fish of better quelity rether tham more fieh needs to be jovestigated as an alternative enhancement strategy.
2. Triploday and steridization programe should be evaluated for weif potential as a tool formanagement (engn a different way to approath the mised wtock harvest problem).

Bn A review of hatchery managememt practices might provide insights into sumt questions as what sje of mmolt whould be redeased to reduce time of instrean residence before migreting to Sean Fractices that: rely on time gpent in fresh wetern imerease the chance of interections between hatchery and widd fish. 4. The pocejbidity wf trancferwimg Cadiformia whinook or emhancing the Columbia Fiver spring ohimook runs meede to be
 thought to wontribute to the local fisherves.
5. A review of the releases of tiatwhery fieti by memeand the Eontribution of these fish to the various omegon offehore fishirg areas needs to be examined. This may provide some information on where emmancement efforts should be concentreted. However, this type of stucy would te restricted due to the jimitetiome of the current deta basen
6. More research needs to be concheted in order to better aswesc the natural production of widestomks in Oregon moastal streamsu This information would provice the besje for manegement decisioms (sum as wettimg the harvest retes jm a mixed fishery). Fresentuy, there is limited intormation on the southern womema stombsu More stuream surveys, wreel censuses, and dife history sturdes would provide a bromown informatiom base for developing a
mangement model for coastal streams. Fieniawle informatjom on watch to eswapement ratios and abundence of stowks is not available for most of the comstel streamso
7. The methods wurrently used to estimete contribution need to be improvedn However, these improvements will wome atomt when more data from recent CWT tag stuctes are availablen it is useless to expend the oder dete due to definiencies in the ariginal. studies. Better information on contribution is expewted with timen we should adopt a "wat and see" attituden especially with respect to the fogue-nBig Greet releasen
B. The poseibility of building a new hatehery or expanding an Existing hatchery in an area on the coast that has stocks that contribute heavily to the Dregon fishery should bee evaluated. This would be an emhancement and mot a reprogramming effortn
7. Hatwhery mamagement: practices smould be reconsjdered with respect to managing populations that have lHNV. Fractices an be alwered to redure the doss of egge by usirg separate egg trays however, this might not be cost effectiven Alternately, the remource cian be managed and the losees to THN acocoted: jm this cise THN would greatly reduce the survivel of juvenilesy but ultimately this could be consjotered as an economje tradewortn Finally, we can continue to wait for the development of an lHNfrees stow:

LITEFATUFE CITED

Andersong J.W. (1994). A method for monitoring and evaluating'salmonid habitat carrying capacity of natural and enhanced Oregon coastal Etreams. United States Eureau of Land Management: Coos Eay, Oregon: USA.
 of fry and adults of the 1972 brood of pint: salmon. Gncortyochus gorbuscha, from gravel incubators and natural spawing at Aute Creetn Alasta. Fishery Eulletin 74: 961-971.

Eams, Fi.A. (1972). A quantitative evaluation of survival to the adult stage and other characteristics of pink selmon (Gncorhynchus gorbusche) produced by a revised hatchery method which simulates optimal natural conditions. J. Fish. Fies. Ed. Canada 29: 1151-1167.

Fans: Fi.A. (1774). Gravel incubatore: a second evaluation on pint: Salmon. Gncorbynchus gorbusche including adult returnen J. Fish. Fies. Edn Canada Bi: 1371-1385.

Eams. Fi.A. (1976). Survival and propensity for homing as affected by presence or absence of lacally adapted paternal genes in two transplanted populations of pink selmon (Qacorgyochus gorbuscha) " J. Fish. Fien Ed" Canada 33: 2716-2725.

Bjornn. T.C. (1977). Wild fish production and management. in Columbe Fiver Salmon and Steelhead. American Fisheries Gociety Gpecial Fublication 10, Washington: D. C.: USA, P. 65-71.

Ejornn. T.C. (197B). Survival, production, and yield of trout and chinook Ealmon in the Lemhi Fiver, Idaho. U. of Idaho, College of Forestry, Wildlife and Fange Gciences Eull. No. 27. Moscow. Idaho.

Furgner: Fi.L. (1980)" Some features of Dcean Migrations and Timing of Facific Salmon, in Selmonid Ecgeystems of the North Eacific. MoNeil. W. J. and D. C. Himsworth (eds.). Oregon State University Fress and Dregon State University Sea Grant College Frogram. F. 15s-164.

Chilcote, M. W. S.A. Leider" and J.J. Loch (1982), Falama Fiver Ealimonid studies, 1781 progrese report. Washington State Game Dept." Fieh. Fes. Fipt. 82-4. Olympia, WA.

Chilcote, M.W, G.A. Leider, and J.J. Loch (19G4). Kelama Fiver salmonid studies. Washington State Geme Depta, Fish. Management Div. B4--5. Dlympia, WA.

Cleaver. $\mathrm{F}_{\mathrm{M}} \mathrm{C} .(1969)$. Effects of ocean fishing on 1961-Erood Fall Chinook salmon from Columbia Fiver Hatcheries. Fiesearch Feports of the Fish Commision by Oregon, VI(1), 76 P.: Fortland, OF:

Clemens: W.A. (1729). Summary of the results of tagging of spring salinon along the west coast of Vancouver Island and Queen Charlotte Islands in 1925, 1926, and 1727. Frogress Reports of Fisheries Fesearch Eoard Facific Coast Etations. issue nou 4: 11-1玉.

Cummings. T.E. (1977). Spawning cohoy chinooky and chum salmon surveys in coastal watersheds of Oregons 1978. DDFW, mimeograph.

English, fuk. (1995), The contritution of hatchery produced chinook and coho to west coast fisheries: preliminary analysis. LGL Limited Environmental Fesearch Associ.ates. Sidney, B.". C . Canada.

Favorite, F. and Ma. Hanavan (196З). Deeanographic conditions and salmon distribution south of the Alasta Fenincula and Aleutian IElands, 1956. INFFC, Eull. 11: 57-72, Canada.
 Comparative agonistic and feeding behavior of hatcheryreared and wild salmon in aquaria." J. Fish. Fes. Ed. Canada 25: 1-14.

Freding FiAu, Fint Major, Fian Eaktala, and Gu Tanonata (1977). Facific Ealmon and the high seas selimon fisheries of Japan. Natla Dcean. Atmos. Admin.s Natl. Marine Fisheries Servicey Northwest and Alaska Fisheries

Fry, D.H. and E"F'" Hughes (1951) " The California Galmon
 Fortiland, Oregon.

Garrison. Fil. (1984)" Stock Assessment of Anadromous Salmonide. ODFW Anmual Frogress Feport. Fortland, Oregon. 29pp.

Garrison. Fian (19g1). Stoc: assessment and genetic studies of anadromous Ealmonidsa ODFW, Amn. Frog. Fep., Fish Feen Froj. No. AFS-75-4: Fortland: ar.

Godfrey，Ha（196日）．Feview of information obtained from the tagging and marbing of chinook and Goho Ealmon in coastal waters of Canada and the United Stetes．FiEh． Fes，Ed，Canaday manuecript Fieport Geries No． 75 Ein Eio． Stang Nanaimos EnC＂s Canada．

Groberg：W．J．（19gS）．IHN：A major problem for the Eouth coast fishery＂Unputashed Oregon Department of Fish and wildidfe Memo．

Grobergy W．J．and JuLa Fryer（19GB）＂Increased Docurrences of Infectious Hematopoietia Necrosis Virus in Fish at Columbia Fiver Easin Hatcheries：1980－1982．Tech．Faper No．basor Dregon State University Agricultural Experiment Stationa Sea Grant College Frograma Oregon State Univereity，OFESU－T－GX－OO2．

Hartmana GuF．（1965）．The role of behavior in the ecology and interaction of umderyearding aoho salmon （Dncorhyrichus tiEutch）and steelhead trout（Salmo Gairdmeri）＂J．Fish．Fies．Ed．Canada 22：1035－10日1．

Hartts A．C．（1962）＂Movement of Ealmon in the Nomth Facific Dcean and Eering Gea as determined by tagging．195b－ 1959．Bull．International North Facific Fisheries Commission．No．by 157 pp．
 Facific Dcean and Eering Sea as determined by sejning and tagging．1959－1760．TNFFC Eulln 17ッ Canadan

Harte，A． $\mathrm{C}_{\text {．}}$（1980）：Juvenile salmonids in the aceanic ErGEystem－－the critical first summers in Selmonid E巨gexsteme of the vorth Eacifig：MoNeily wn a and D．C．Himsworth（EdEn）＂Dregon State University Frese and Oregon State Univereity Sea Grant College Frograms p． 25－5日。

Hashimotog T_{μ} and Y_{4} Maniwa（1959）＂Figh－finding on the Ealmon fishing grounds in the North Facific Deeang in Moderg fishing gear githe world．Fishing News Eooks． Lomdon：p．52天－524．

Herny，K．A．（1964）＂Dregan Coastal Salmon and Steelhead tagging programes Fart I！Tillamool：Eay，tysen Fish． Comma Oreg．Contrit．No．2日： $1-41$ ．
 mortality for Columbia Fijver Hatchery Fall Chimoot： Salmon and the effect of mo ocean fiehimg on yieldn Fies．Feps．of the Fish．Comm．of Dregon．Val．S（2）＂ 13 － $27 n$

Howell：F．＂Tn，D．L．Scarnnecchia＂L．Lavory，W．Kendray and D． Ortmann（1984）＂Stock Assessment of Columbia Fiver Anadromous Salmonide．Vol．I－－－Chinoot：Salmon by odFw， WDF：WDG，IDFG！prepaid for L．Everson：U．S．Depta of Energy，EFA，Diva of Fisheries and Wildifes Froject No．日S－33S．Draft Feport

Infectious Disease Frogram for Salmon and Steelhead Trout Hatcheries（1992）．＂Annual Report．July 1！1981－ September：30，1982．Oregon Department of Ficheries and Wildidfeg Fisheries Division．

Informal Cominission on Chinook and Coho（1969）．Feports by the U．S．and Canadia on the Stetus．Dean Migrations，and Exploitation of the mortheast Facific stocks of Chinook： and Coho Salmon，to 1964．Vol．I．Feport by the W＂S． Section：Voln II！Feport by the Canadian Sectionn

Intemational North Facific Fisheries Commission（19日1）．Anmual Report．1981．Vancouver．Eritish Columbia．
（1982），Annual Feport．1982．Vancouver：Eritish Columbia．
（1983）．Annual Feport．1983．Vancouver．Eritish Col Limbia。

Johnson，J．H．（1780）．Froduction and growth of Eubyearling coho salinon（Dncorhychus kisutch），chinook salmon （Gncorhynchus techawytecha），and steelhead（Gelmo gairdneri），in Orwell Erookin a tributary of Salmon Fiver，New York：Fishery Eull．78：549－554．

Johnson，KaA．，J．E．Ganders，and J．L．Fryer（1979）．Ceratomyex shaste in selmonits．Fish Diseases Leaflet Eg．U．S．Depta Int．，Orea Agric．Exper．Ste．${ }^{\text {a }}$ Tech．Faper No．Sizo．

Johnsong S．L．（1994）．The Effects of the 1983 El Nino on Oregon＂s Coho and Chinook Salmonn ODFW Tnformetion Feport 84－8．

Jonassong E．C．and Fi．E．Lindsay（1993）．An ecological and fish cultural study of Deschutes Fiver salmonids．ODFW， Fish Fes．Froject F－Bg－Fi－is．Annual Frogress Feport： Fortland，Oregon．

Junger $C, 0$ ．and L ．A ．Fhinney（194s）．Factore affecting the return of fall chinook to Spring Creel：Hatchery．Ung． Fish and Wildiife Service，Special Scientific Feport Fieh．No．445．Washimgton！DuC．

Kauffman．D．E．（1951）＂Fesearch Feport on the Washington State offshore troll fishery．Fac．Mar．Fi．sh．Comm． Eull．2n 77－92，Fortland，Oregon．

Fondon $H_{n} Y_{n}$ Hiranon Na Nabeyaman and M．Miyate（196S）＂口ffehore dictribution and migration of Facific salmon （genus Dncorfynchus）besed on tagging studies（1958－ 1961）＂TNFFC EuII．17．Canadan

Lander．Fi＊（1970），Distribution in marime fisheries of marked Chinool：Ealmon from the Columbia Fiver Hatchery Frogram．Fies．Fipt．Fish．Comin Dregon Vol．2（3）：28－SE．

Lannan！J．E．and AnFi．D．F゙apuscinstij（1984）＂Gemetic guidelimes for evaluation and selection of enhanaement projects under The Salmon and Steelhead Conservation and Enhancement Act．Fieport to the Enhancement Flanning Teain．Fac．Mar．Fish．Comm．，Contract No．B4－0002．
 foreshortemed history of research in relation to management of Facific salmon．J．Fish．Fies．Ed．Camada

．．．．．．．．．．．．．．．．．．．．．．（1981）．A pergpective on population genetics in Salmon mamagement．Canad．J．Fishay Vol．SGu 1469n

Lister，D．En and $E_{n} E_{n}$ Walker（1706）＂The effect of flow control on freshwater survival of chum，cohos and chinook：salmon in the Eig Qualicum Fivern Canadian Fish－Culturist ふ7n ふー2S．

Major，FaLa and J．La Mighell（1767）．Egg－to－migrant Survival of Epring chinool：selmon（Dngorhymchus tsEhawytscha）in the Yakima Fivery Washimgton．Fishery Eull．b7：ذ47ー区5．
 Distribution and abundance of chinoot：selmon （Dncortynchus tehewytscha）in offshore waters of the North Faeific Dcean．INFFC Eull． 31.80 PF.

Manzer：J．I．（1964．）．Freliminary observations on the vertian distrjbution of Facific salmon（genus Qncortynchus）in the Gulf of Alasta．J．Fish．Fes．Ed． Cameda 21（5）＂ $091-90 \underset{\text { ® }}{ }$

Martina Jn（1782）．Biological concerns－mega boxes． Memorandum，ODFW：August： Bo ：1982．

Mason» J．C．（1974）＂Further appraisal of the response to supplemental feeding of juvenile coho（Dncortyychus Eisutch in an experimental stream．Fish．and Marime Servite Technical Feport Non $74 \mathrm{~S}_{\text {и Manaimoy Canadan }}$

Mason，J． C ：（1975）＂Seaward movement of juvenile fishes． including lunar periodicity in the movement of coho

Mason！JnEn（196E）．Salmon of the North Facific OGEarm－－Fart IX，2．Chjnoot：salmon jn offshore waters．INFFC Eull．． 16：45－73．

MoGie，AnM．（1980），Coastal Fall Chinoot：Stoct Assessment Froject．GDFW Federal Aid Frogress Feporty Fortanaly Oregona

McGie，A．${ }^{\prime \prime}$（1981），Trends in Escapement and Froduction of Fall Chinoot：and Coho Galmon in Oregoma DDFW Information Feport B1－7n Cherleston，Oregon．

Mcintyre，J．D．（1．783）Frogrese in the development of guidelines for outplanting．Unpubl．manuscripta Nat． Fish．Fiesearch Center，Seattle，WA．

Mj．Ilerg Fin．（1954）．Comparative survival of wild and hatchery－reared rutthroat trout in astream．Trans．Aim．

Mortencen！E．（1977）＂Density dependent mortailty of trout fry（SElmo trutte L, ）and its relationship to the mamagement of small streams．J．Fish Eiol． 11 a bis－bi7．

 Filcher，and J．L．Fryer（1900）．The occurrence and distribution of salmonid viruses in Oregona Technical Faper No．GGo4，Oregon Agricultural Experiment Stationn Sea Grant College Frogram．QSU：OFESU－T－8－OG4．
 Deva Sec．s Fed．Aid Frog．Fep．Fisha 1977．

Muldena Finn（17日1）＂Dregom＂s commeroial hervest af coho三almon：Dncorbynchus $\dot{\text { Gisutch（walbaum），1892－1960．}}$ ODFW，Information Fieport Series，Fjeh．No．Bi－a．

Neaven $F_{n}(1951)$ ．Dbservatione on troll－waught selmon of the West Cosst of Vancouver Isiand，1949．Fac．Mar．Fisha Comin．Eull，2n 93－101，Fortland，Oregom．
 Salmon Studies．19go－8巴．ODFW Annual Frogrese Feport． Fortland：Oregon．

Nickelson，T＂En（19日1）＂Coho presmolt program for Dregon coastal Etreamen GDFW，Imrormation Feports（Fish）B1－1， Fortland：OF：

Wictelsom；T＂En（1985）＂The influences of Lipwelling．ocean temperature，and smodt abundence on marine survival af coho salmon（Dncorhymchus tisutch）in the Oregon Froduction Arean Cenn J．Fishn Aquet．Scin，in press．

Wishiyama, T. (1977) " Food-energy requirements of Bristol Eay socteye selmon Dacorhyochus nerse (Walbam) during the last mamine lifestagen Fesearch Institute of the North Fac. Fac. of Fish. " Hokkaido Univ. Spec. vol. 1977" 239-320.

Facific Fishery Management Commission (1952). 4th annual report of the Facific Marine Fisheries Commission for the year 1950. Fortland, OF.

Facific Fishery Management Commission (1959). 10th annual report of the Facific Marine Fisheries Commission for the year 1957. Fortiand: OF,

Facific Fishery Management Commiseion (1961). 12th annual report of the Facific Marine Fisheries Commission for the year 1959. Fortland. OF.

Farkerg RaFin and W. Kirkness (1956) " King Ealmon and the ocean trol. fishery of southeastern Alaska. Alaska Dept. Fisha: Fes. Dept. No. 1: 9-64.

Feterman, $\mathrm{F} . \mathrm{Ma}_{\text {a }}$ (1980). Testing for density-dependent marine survival in Facific selmonids, in Gelmonid Ecosyeteme of the Nowth Eacific. W. J. MeNeil and D.C. Himsworth. eds:, OSU Fress and OSU Sea Grant College Frogram. pa 124.

Fritchard, AuL. (1954). Facific Ealmon migration: the tagging of spring salmon in Eritish Columbia in 1929 and 1930. Eull. Eiol. Ed. Canada 41: S1.

Fulford, En (1764), Oregon Fish Comission chinook and coho fin-marking experiments, 1946-176s. Unpubl. meag 41 Pp.: Dregon Fish. Comm.

Feimersy FaEa (1973). The length of residence of juvenile fall chinook: salmon in Sixes Fiver, Oregon. Fish Comm. Ore. Fes. Rep. 4(2): 4马 pp.

Feimers. F.E. and T.W. Downey (19日2) "Fopulation dynamice of fall chinook salmon in Sixes Fiver. odFW: Frog. Fep. AFC-102.

Feisenbichlerg Fi.Fin and $I_{\text {. }}$. Mcntyre (1977). Genetic differences in growth and survival of juvenile hatchery and wild Eteelhead trout, Salmo gairdneri. J. Fish. Fes. Ed. Canada 34: 12s-12G.

Feisentichlerg Fi.Fi. (1984)n Dutplanting: potential for harmful genetic change in naturally Epawning selmonids, in J.W. Walton and D.E. Houston (edsa), Froceedings of the olympic wild fish conference. Feninsula colleges Fish. Tech. Frogram, Fort Angeles: WA, p. 35-3.

Feisenbichler, Fi.Fin and J.D. McIntyre \{undated). Fequirements for integrating natural and artificial production of anadromous salmonids in the Facific: Northwest. Unpubl. manuseript, Uns. Fish and Wildilife Service, Nat. Fish. Fesearch Centery Seattie, WA.

Fichs W.H. and M. Eall (19®u)" Statictical review of the Alaska salmon fisheries, Fart IV: southeastern Alaskan Bull. U.S. Eur. Fish. 47: 4.37-67ङ.

Fich. W. H. and HaE. Holmes (1929). Experiments in marting young chinook salmon on the Columbia Fivery 1916 to 1927. Uns. Eur. Fich. Doc. 1047: 215-264.

Ficter, $\mathrm{Wa}_{\mathrm{E}} \mathrm{E}_{\mathrm{a}}$ (1972), Hereditary and envirommental factorg affecting certain salmonid populations. in R.C. Simon and Fin Larkin (eds.), The stock concept in Facific salmon. U. Eritish Columbia, H.Fi. MacMillan Lectures jin Fisheries, Vancouver, Canade, p. 19-160.

Ritter, J. A. (1975). Lower ocean survival retes for hatchery-reared Atlantic salmon (Salmo salaw) stocts released in rivers other than their native streams. International Council for the Exploration of the Sea, Feecurree Dev. Eranch. Fisha and Mar" Servu, Helifax, Nova Scoties Canade.

Golazzi, M.F. (1984). Feletionships between visual counts of coho, chimoot: and chum salmon from epawning fish surveys and the actual number of fish present. DDFW, Fish Divas Information Feport 84-7, 22 pp.
 effectiveness of etocking hatchery coho presmolte to increase the rearjing density of juvenile coho salmon in Oregon coastal streams. ODFW, Information Reports (Fish) GJ-1; Fortiand, OF:

Golazzi, M.F. and J. Ta Martin (1982). An Introduction to Chimook Salmon Flanning. ODFW Information Feport ee--3, 125 pp.

Stein, F.A.g FiE. Feimerss and J.D. Hell (1972). Social interaction between juvenile coho (Gncorhynchus Eisutch) and fall chinoot salmon (og techawytscha) in sixes Fiver, Oregon. J. Fish. Fes. Ed. Canada 27: 1737-17.48.

Thomas, A.E. (1975). Effect of Egg concentration in an incubation chanmel on the survival of chinook: salmon fry. Trans. Am. Fisti. Soc. 104: उSE-SE7.

Uremovich, Bu (1G77), Straying of fall chinool from the Elk Fiver Hatchery into Sixes Fiver: 1970-1976. ODFW: Information Feport Series, Fish. Wo. 77-6: 7 pp.

Utter, F.M., D. Compton, S. Grant: G. Milner, J. Sceb, and C. Wishard (17go). Fopulation structures of indigenous salmonid species of the Facific Northwest, in Selmonid Egg巨yteme gf the North Eacificy W.J. McNeil and D.C. Himsworth, eds., OSU Fress and DSU Sea Grant College Frograms p. 285-304.

Van Hyning: J.M. (1951): The ocean Ealmon trall fishery of Oregon. Fac. Mar. Fish. Comm. Bull. 2" 43-7i.

Van Hyning: J.M. (1968). Factors affecting the abundance of fall chimoot: salmon in the Columbia Fiver. Fh.. Thesisy Oregon State University, 424 pp.

Van Hyning. J.M. (1973). Factore affecting the abundance of fall Chinook salmon in the Columbia Fiver. Fies. Fpts. Fish. Comm. Oregon vol. 4(1): 87 pp.

Whhle, $\mathrm{Fin}_{\mathrm{J}} \mathrm{J}$ (1985), A plan to identify chinook and coho salmon stocks of the North American West Coasta suggested techniques, freshwater geographicel origine, stock abundance and hatchery production. Draft. Fac. Mar. Fish. Comin.

Wathe, Fi.J. and Fiz. Smith (1979), A historical and descriptive account of Facific coast anadromous salmonid rearing facilities and a summery of their releases by region, 1960-76. U.G. Dept. Conmerce, NOAA Tech. Rep. NMFS SSFF-7S6, 40 PF.

Wallis, J. (1763), An evaluation of the Big Creet: salmon hatchery, clackamas, Fish Comm. Orea, mimeo.s b4 pp.

Wallis, J. (l964). An evaluation of the Bonneville salmon hatchery, Clackamas, Fish. Comm. Dren, mimeon, 90 pp .

Wallisn J. (1964), An evaluation of the Oxbow salmon hatchery, Clackamas, Fish Comm. Orew. mimeo. 67 pp.

Williamson, $H_{\wedge} C .(1927)$. Facific salmon migrationa report on the tagging operations in 1725 . Contrib. Canadian Biol. Fish. उ: 265-306.

Williamson: $H_{n} \mathrm{C}$. (1929). Facific Ealmon migration: report on the taggin operations in 1920. with additional returns from the operations of 1925. Contrib. Canadian Eiol. Fishn 4: 458-470.

Williamsong $H_{4} C$ and W.A. Clemens (17X2) "Facific salmon migrationu the tagging operations at Ouatsino and トyuquat in 1927, with additional returns from the operations of 1925 and 1726. Ottawa. Biola Ed. Canada Bull. 1 No. 2b.

Worlund. D. Dn, Fn. J. Wahle, and F"D. Zimmer (1969). Contribution of Columbia Fiver hatehemies to harvest of fall chinoot selmom (Dngorhymshus tshewytsche) " Fishery Butl: 67: B6!

FEWEFENCES

Anderson, $3 . W$ (1984) A method for monitoring and
 and entramced Dregon coastad streams. \quad anited States

 of fry amd wdulte of the 1972 browd of pint: Embmus Qreorbybchus gorbuschas from gravel incubators and natural spawning at fubse Creets, Alastan Fishery Eullwtin $74 \% 961-9 \% 1$.

Bams, FiA。 (Jq72) A quamtitative Evaluation of survival to the adult stage and other eharacteristics of pint malmon (Oqcorbynctum gerbuscma) produmed by arevised hatcomery method whim simulewes optimal newneal comoitionsa J. Fish. Fies. Ed. Camada 29: 1151-116\%.
 pint salmon, Oroctivachus gorbuscher including adult

 affected by presence or absence of lacally adapted patermad genes in two tramemammed populations of pimb Ealmon (0reorhymchus gobbusche). J. Fisha Fes. Ed. Camada se: 2716-272世-
 Oregon-Washingtom troll Chinoot: salmon stuctyy in

 to five Gpecigs of Fecific sadmon (Gembermegrbyncbus)
 21 (5) : 1267-1288.
 Golumbia Eiver Ewimon gnc \#weghead. Americen Fisheries

 Sciemces Euli, No, $27, ~ M o s c o w n ~ l u a b o . ~$

$198 *$
 of mewl y Emerged sombeye salmon fry，Internet．Fac．
 Columbia，Canadan

Eurgner，Finn（oge）．Some feeturem of Deean Migrations and Timing of Facific Galmom，in Salmonid Ecosyotems of whe
 Uregom State University Fress arod Oregon statw Whiversity Gea Grant Gol Jege Frogram，p．1sis－164．
 River＂salmonid studies， 1.981 progress meport． Washimgtom gtate Geme Dept，y Fish．Fies．Fipt．B2－4， ［l］ympian W⿵⺆
 Fiver Galmonid studiesn Washington Gtate Game Depta， Fish．Manaqument Div．8，－S．Olymoia，WA．
 Fist Comm，Oregn Contrin Non 1b，17opn
 Fe11 Chimwor melmon from Columbia Fiver Hetwheries． Fescerwh Feports of the Fish Gommision by Oregon，vI（b），

Clemens，W，A＂（192\＃）Summary of theresults of tagjng of spring sabinon along the west coast of Vancolver Itsland
 Frogress Feports of Fimheries Femearch Eoard Fatific Coawt gtationsy issme mu．4：11－1＂。
 of the wpring salmom on the west comst of vernomver
 of other fimn Eull．Biol．Ed．Camada，27：1－10．

Cobby J．N．（19t1）．The salmon fisheries of the Facific

 1092.
 Wanadian Chinook and Goho catoh sampling and mark：
 recoveries for each wag coden Fishn Marn Gerv，oata

Fep. 与a, 629p.
Cummings, TnE. (1976) EEtimetes of 1974 Gport Harvest af Fall. Chinook and Coho Galmori, Tillemook Eay, Oregon. ODFW Information Feport, 7e-6. Comvallis, Oregon.

Cuminings, T.E. (1979). Spawning wohos Ehinook, and chum salmon sumveys in woestal watwesheds of Gregon, 1976 n oomw, mimeographn

Department of Agricultuman and Resource Ewonomicsn Gregon State University (19y8). Sociomeconomics of the ldaho. Washington, Oregon, and Waliformia woho and chimoat selmon industry. Final Report to the Farifice Figharies Management Councis (FFnC)" Supported by FFive contrect non $77-10$ and Sea Grant College Frogram Grant: Nos. O4-8--Mo1-144. Vols. A (Sep 1978) and E (0rte 197e-wch. 101. S^{\prime}.

Depertment of Fisheries and Environment (197\%). Ammat Gummary of British Columbia Catich statistics, 197t. Dep. Fish. Envirom, Caneda, Fish. Maragement, Vancouver, British Columbia, 2e p.

DeLury, DnEn (1958), The estimation of population size by a marking and recapture procedure. J. Biological Bd. of Canader 15: 19--25.

Englishn knke (1985). The contribution of hetwery produced chinool and coho to west coast fisheries: preliminary anatyms. LGL Limited Envirommental Fesearch Associates, Gidney, EnC. , Canada.

Evenson, $\mathrm{H}_{\mathrm{n}} \mathrm{D}$. and F", D. Ewing (1984). Cole Fivers Hatemery Evaluationn ODFW Anmual Frogress Feport. Fortiand, Dregom.

Favorite, F" and hien Hamean (1963). Dememographice conditions and salmon distribution south of the Alaska
 57-72, Camadan
 Comparative atonistic and feeding behavior of hatchery-.. Feared and wild salmon in antumia. J. 5 imh Fies. En. Canade 25: 1-14.

Final EIE mad Fisheries Management Puan for Commerwiel and Fecreational Salmon Fisheries of the Coast of Washimgtom, Dregong and walifornian commencing in 197e. Pacific: Fisheries Management Counci1, April 1977, Maren 157e, and fprid 19\%\%.

Fish Commseion of Oregon (1970-1976) Fin-Mart Gampling and Fewevery Feport for Gelmon and gteelhead from various

 1． F F 。

Froding Fina（x9Qo）Tremos im North Facific Sadmom Fin merias，in gelmonjo Ecosystems of the
 Oregon state Uri versity Fress and Urewom state University Sea Grant College Frogram，Pu 59－12o．
 （1977），Facific adimon and the high seas sedmon fistieries of Jeparm Natl．Dreem＂Atmos．Acminn，Nati． Marime Fisheries Service，Northwest and Alaska Figheriea

 distribution and abundance studies，in Feport on the investigetions by the bnited gtates for the
International North Eacitig Eisherieg Eommission＝－ 964 ． TNPFE Ammual Feport 1964：81． 91.

Fry，D．H．and E＂F．Hughes（19Fi）．The Calitormia Salmon
 Fortyame Dregom．

 OF：
 Of anadromous madmonidsn GOFW，frnnn Frogn Fiepa，Fish

Garrisom，RuL．（19日4）．Stot：Assessment of Anadromoum
 Qregorig agpo．
 Genetic Studies of Anadromous Galmonids．DoFW Federal Aid Frogress Feports，Fortacma，Oregom， 41 PP ．
 4，Uibwig immunizatimm Etudies．Fed．Aidn Frogn Fiemen， Figheries，Wregom Department of Fisherjes anct wildite． j 3 。
 the coastal rivers of bregon south of the Columbian

 75.

Godfreyn H. (196日) , Fieview of imformation obtained from the taggimg and merkimg of chimook and cemo selmon ja
 Fes, Bd, Canada, mamuscript Feport Geries Nou gian Eio.

 Distribution and abumbanme of wono selmom im offshore waters of the North Facific Ocemn. Inta N. Fac. Fisha.

 the Columbia Fiver Basimn Froceedjras ot the Viral Disemses of Selmomid Fimtes in the Columbia Fiver Bessin Workshop, Oct" 7 - 8 , tgecn Eomneville Fower Admimistration, Fortlam, Oremom,

Grobergy W_{a} g. (19gEj) \quad HN: A major problem for the south coast. fishery. Unpublished Oregwn Departmert of Fisir anc wildidfe memo.

Grotergy W. Jn amd JnL。Frymy (JGge) n Increased Decurrences
 Godumbia Fiver" gasjr Hatcheriesa d9Bo-1982n Tworn Faper No. Goxog Oregom gtate University Agricultural Experiment Btation, Sea Erant woldege Frogram, Oregom

 Digeases of Salmonio Finh in Oregon. Froc. N. Facific
 Oregony Oregon State University Sea Grant College Frogram Fublication No. OFtegu-Fi-ge-oog.
 Evaluation of Fishery Comtribution from Fall Ehimoob: Galmom reamed in Oregon Hatcheries on the Columba a

Hertman, G.F, (196G), The role of behavi or in the ecology mad imtermetion or umderyearlimg wotno welmon (Oncorbymohus bjsuty) and stemblead trout (salmo

 Doean amd Berimg Gea as determined by taggimg, 1956-
 Commission, Non 6, 157 FP
 Fucific Gcean and Bering Gea ationetermined by aeining and teggirig, 1959-1960, TNFFW Eut1. 19, Eamadan
 ecosymtem-othe muticel firet summer, in belmonid

 Oregom Gkate University Sea Gramt GolJege Frogram, F. "-wo
 studies, in Eeport got the investjgations by the Uniteg Gtetes for the Internetionel Nowth Eacific Exsheries

 salinon tishing grounds in the North Facific Gcean, in

Hem"y, KinA" (1964) (Jregon Cowstal Salmon and Stealtead

Memry, Fina (1.965) Estimates of Maturation and Doean mortadity for Columbia Fiver Hatwhery Fall Chimoot: Galmon and the effect of no ocean fighimgon yield.
 27.
 Ldemtification of IFN, VHS, IHN, and GVC viruseg from
 180

Hobson, L.A. (J980). Frimery productivity of the Norto Facifis Ocean--A Fieview in Selmomjd EGosyetems of the
 Oregom State Univer sity Frese anct mregon stete University Sea Grant College Frogram, Pa 2g1-94Gn
 and Gmate Fiveraspring chinoot: sulmom in relation to the Endarigered Spmojes act. A report to the U. Sn Fish

Hootom, FッM, (1978) Fragress rewort on mative browostock collections on the Yaquine, Siuslaw and Coos Fivers. ODFW, Fes, and Dev, Sec., Jmformation Feport Ser, , Fistin $\mathrm{NO} \quad 7 \mathrm{BW}$ - 27 pF.
 (Grtmanh (19g4). Stock Assessinent of Columbia Fiver
 WOF: WOG, JDFG; prepaje for La Everson, Uns. Dept. of Eriergy, BFA, Div* of Fisheries and Wilolifw Froject No. BE-ste Draft Feport

 Water Fequirements：Oregon Stete Geme Commiseion，
 No． 1 ．Fortiandy Oregon．

Infectious Disease Frogrum for Gelmon ard Btewlbead Tromt
 September，SO，19日a．Dregom Derwrtment of Fisheries and Wildilfe，Fisheries Division．

Informal Commissiom on Ctrimoot and Cotno（1967）a Fieporte by the U． 9 ．and Lamada on the Gtatus，Ocean Migrationsy amo Exploitatiom of the northeast Fawificesocke of bhimoot：
 Gections Vol．II，Feport Ey the Camadjen Section．
 1974）A Arimal Reports，Vernmenver，Eritish Cojumbian

INFFC（19日1）：Ammal Feport，1981．Vancotver，Britiam Col umbian
 Columbia．
 Columbia．
 salmon of the North Fecific Oceang and draft．INFFO，

INFFC secretariat（1979）。 Historical catch statistics for

 patterns as a means of idemtifying races of spring Chimoot：in the Columia Fiver．Fess．Fipts．Fistia Comm．

 Fac．Marn Fish．Gomm．Fortland，Oregorn．
 Frocessing Genter＂，Fac．Mar，Fistu，Womm，Fortiand， ロr＂emon．

Wohnson, K.An, J.E. Sanders, and J. L. Fryer (1779) E Eeratomya Ehesta in salmonidsn Fi=h Diseases Leaflet fe. U.G. Deptn Int." Ore" Agric. Exper. Sta." Tech. Faper No. 5130.

Johnsen, Sun (1994). The Effects of the 198S EJ. Nino on Oregon's Woho and Chinook Salmonn DrfW Informetion Feport 84-8.
 fish culturel study of Deschutes River salmonider ODFW, Fish Fies. Froject F-88-F-13, Anmual Frogress Feport, Fortland, oregon.

Junge; C, O. and La A. Frinney (1963) " Factore affewting the return of fall chimoot: to Spring Creek Hatchery. U. Gn Fish and Wildife Service, Special Scientific Feport Fissh. No. 445, Washingtomy D. C.

Kasahara, H_{n} (196\%). Catwh statistics for North Facific. Galmon, in Galmon of the Nomtg Eecific Gceann Eart In INFFC Eull. 12: 7-32.

Katufman, D.E. (195)), Fesearch Feport on the Washimgton State offshore troll fishery. Fac. Mar. Fish. Comm. Eulln 2: 77-92, Fortianc, Oregon.

Fondo, H., Y Hirano, N. Nakayama, and M. Miyake (1965). Offshore distribution and migration of Facific selmon (genus gncorbynchus) based on tagging studies (19ge1961). INFFC Eul1. 17, Ganade.

Lamman, J.E. and A.R.D. Kapuseimski (1934). Genetic quidelines for evaluation and selection of enthancement projectes under The Salmon and Steenhead Conservation and Enhancement Act. Feport to the Enhancement Filanning Team. Fac. Mar" Fish. Comm. Contract No. B4-000\%.

Larkin, F.A. (1979) , Maybe you can't get there from herea a foremhortened history of research in reletion to management of Facific selmon. w. Fish. Fies. Bd. Canade 36: 98-106.

Lesmter, J.E. (1966). Tag loss and mortalities of small Chinook salmon. Wash. Dept. FiGh., Fisho Fes. Fapers, 2(4): 90-9.

Lander, F.H. (1970), Distribution in merime fisheries of merked Chinook salmon from the Columbia Fiver Hatchery Frogram. Fies. Fptn Fish. Comm, Dregon vol. 2(3): 28-5E,

Leaman, J. (1972). Supplement to Fisheries and wildife Fescurces of the Roque Easin, Oregon, and their Water Fequirements, Nov. 1970 . Oregon State Game Comisesom, Federal aict to Fish Restoration, Froject F-6q-w- \%, Job No. 7 . Fortana and Oregon.

 Coast Batinn，Oregonn and thejr Water Fequirememt：
 Festoretion，Froject Non 654of，Job No．14．Fortland， Oregor．
 Fisheries and Wildiffe Fesources of the Unpqua Basim， Orequm，and their Water Fequirements．Oregon gtate Game Commission，Federal Aid to Fish Fiestoration，Froject NO．F－69－Fi－Gn Fiwntiandy Oregonn
 comtrol om freshwnter survival of chuma cuman arnd Ghinool：salmon in the Eig oualicum Fiver，Canadian Fish－Culturis．

Major＂Fi．，Jn Tto，S．Iton and H．Godfrey（197日） Mi 5 tribution and mburdance of eblimoot sedmor （Dncorbymchus tshawytscue）in oftshore waters of the North Ficitic Dcean．IWFFC Entl．EL，BO PPa
 of spring chinoot salmon（Dneorhynchus tschawyseha）in the Yatima Fiver，Weshinglonn Fishery Eull．b7：34\％－ 559．
 vertical distribution of Facifjc salmon（gemus Grcormymebus）in the Gulf of AJastian J．Fisha Fes．Ed． Camader 21（5）：891－90世，
 （1．565）．Offshore distiribution of salmom，in Gajmom of
 Varicouver，Fritish Columbie．

Marting J．（1782）．Biological concerns－－玉gg bowes． Fivmormandum，ODFW，fugust， $\mathrm{m}, 1982$.

Masony J． 0 ．（ 1774 ）F Further appraisal of the respomse to supplementel feeding of juvenile coho（Drogrhynchus Eistity in an experimented streama Fishn ancl Marine

 5almon fry．J．Fisin．Fies．Bd．Camade Be：2542－2547n

 Oregon gtate University frews ard Oremom State University Sea Grent bolaege Frogram．
 Wiatersheds of Oregon．OOFW Feder al Aid Frogrest Feport， Fortoland，Oregorn．
 Froject．GDFW FEderal Ado Frogress Feporty Forthand， Oregom＂。

McGiEn A．Mn（19B1）＂Tremde in Eswapement and Fromuction of Fell Chinook and Coho Salmon in Oregonn oofw

 tiew Nortw Fiecificy W，J．McNeil and D．En Himsworth，edma，

Molntyre，J．D．（Jqgis），Frogress in the development of quidelines for wutplantirig．Unpubln manuswript，Nat． Fish．Fesearch Center，Geattle，WA．

Memmtyre，J．D．and F．Fin Fieisentichler（198E）．A model for selecting harvest fraction for aggregate populations of Matchery and widd walmomicls．U． B ．Fish amd Wildilfe Service，NFFC，Geattic，Washington．
 artificiad．recruitment of amadromous species．FAG Tech． Conf：wn fquawulturen foyoto，Japerna

Niller，Fi． Bn_{n}（19世4）。 Comparative survival of wild and

 salmon taggin experiments，and a comparisom with thome condumtwd from 1925 to 1930．Bulln Eiol．Bd．Camade

 and como sadmon in the gtrattof Georgia in 19Go．Frog．
 18.
 stock Iomentication Study，Nmfe，Seattlen Washington．
 tagging program，Fart II，Giletz Fiver，19G4，Fish． Comm．Oregon Comtrib．No．さe：4玉－6玉．
 fry (Salmo trutwe Ln) and ita relationship to the

Motley, $C, M,(1729)$. Facific Salmon Migrationa Feport on the
 tschawytschay tagged in 1920 and 1927 off the west Coast of Vancouver Island. Contribn to Canadian Bian a"d Fishn 4; 471:494.

 Filcher", amd JuL. Fryer (1980) " The occurrence and distribution of selmonid viruses in Oregom. Technical F"per Non SEO4, Dregom Agricultural Experiment gtatiom, Sea Grant College Frogram, OSU, OFESU-T-8-6o4,

Mullem, F"E』 (19"y), Salmon Fixver Frojewta DDFW, Fies. and Dev. Seany Fed. Aid Frog. Fepn Fis shn 1979.
 Ealmon, Dncorbyncbus Exsutch (Walbaum) 1892-1960. ODFW, ImFormatiom Feport Geries, Figha No. \&i-w.
 West Coast of Vancouver itshandy 1949. Fat. Mar. Fish.

Neave, $F_{n}(1964)$, Gcean mictrations of Facificesalmon. J.

Nicholds, J.W. and T.W. Downey (1983). Coastel Chinook
 Fortland, Oregon.
 The potemtial impact of releasing hatchery coho galmon om wild juvenile whinoot in the gimslaw Estuary. omFW, Fish. Div. Information Fieport Ger", Fish. No. $79-7,24$ PPn

 Fortanacin DFin
 temperature, and smolt abundance on marime survival of
 Froductiom Areen Cemn dn Fistm, Aquat. Sci., in pressn

$289-52 \%$

 WDF FPMOg. Fipt. alo.

GDFW (197%) , Fishery Fiesearch Fieview amd Fidaming $1977-78$. Fesemem Gection, Corvallis, Dregon, 47pp.

ODFW (1977a) 1975 wire teg ard firmombe Emoling arad recovery report. for salmon and stealhead from varioum Fatific:

OOFW (197B), Fishery Fesearch Frogress in 1977 and Flans for 1978. Fesearm Sectiom, Corvallis, Dregon, 49pp.

 Oregom, obpp.

ODFW (IG8E) , Fishery Fwesearch arnct Development Frogress in 1985 and 1984 , and plans for 1985 . Fiesearch and Developmertw Gewtiom, Comvaldis, Dregom, gopp.

Facific Fishery Managememt Commission (19G2): 4th ammual report of the Facific Marime Fimineries Commiseion for the year 19GO. Fortabad, OR,
 meport of the Facific Marine Finheries Commission for the year 185\% Fortland, OFin

Facific Fismery Management Commission (1961). 12th ammal. report of the Facific Marine Fisheries Commission for the year 1.759. Fortand, GFin
 for managimg the 1 gego salmon figheries off the coast of

Fecifio Fighery Management Commission (1984). A review of the 17 B owean walmon fisheries and status of stwtws anct management goals for the 1984 selmon seasoin off tite comsts of Califormian, Oregong amd Wanimgtonn marcit 1.984.

Facific Fiwnery Munagememt Commiswion (1985), 1984 ocmem

Facific Marine Fisheries Commiseion (1973)。Mark List. M, mimeograph, Narch 15, 197马, Fortiand, Oregon, 81 pp.
 Salmorid एowed Wire Tag Rwewveries（1967－8玉）。 Fegional Mart：commi mion，Orea
 Nowth American stocks of Facifia salmon and steelhead．

 fishery as a source of experjmental error．J．Biol．Bd． Camede 17： $515-320$ 。

Farker，FiFn and W，kirkness（1956）＂king malmon and the ocean troll fishery of southeastern Alaskan Adaska Dept．Fishn，Fes，Dept：No．1：9－64，

Fealit，G．J．（19G1）：Detection of incompletereporting af

Feterman，FíM．（1978）．Testing for densitymependent marine survival in Fewificu selmoridas．J．Fistnn Fies．Ed．Cumada 3（11）：143－1450。
 survivel in Facific salmonids，in Gelmonig Ecogystems Qf the Notity Eicifje，W，J．MoNeil mad D．G＂Himsworth，
 24.
 State Department of Finheries＇controlled natural－ rearing program for cotio andmon．Supp．Fipta Washa Depta Fishn 15app．
 to determine distribution ot Gelmon in the Nortm Facificu
 Scientific Feport－－Fisheries，No，zoz，3OP户口
 taggimg of spring salmon in British Columáa in 1959 ama

 pp．，Oregon Fish．Comm．
 Fiver Hatchery Fial 1 Chinoot salmon to mport and
 Voln E（1）：－－14n
 from juvenjue fall whinombin 1 ixaea fiver esthary，

Feimers, F.E. (197s). The Jength of residence of juvenile fall chinook salimon in Bixes River" Gregom. Fish Comm. Oren Fess. Fep. 4(2): 4玉pp.

Feimers, FnE. and R.E. Eender (1979). Survival and contribution of 1969 brood fall chimook from Elt Fiver Hatchery. GDFW, Information Feport Series, Fish. No. 79-6.

Reimers, F'an and TiW. Downey (19ge). Fopulation dymamies of fall chinook salmon in Gixes River. ODFW, frogn Fep. $\mathrm{AFC}-102$.
 Maciolek, J.D. Fodgers, and E.E. Miller (1979). Goastal. salmon ecelogy projewt, Ann. Froog. Fiep. AFC-7o-s. DDFW, Fortiand, OR, 44 ppa

Feisentichler, Fin. (1784). Uutalantimg: potential for harmful genetic change in naturally spawning selmonicis, in J.W. Walton and D.E. Houston (edsa), Froceedings of the olympic wild fish conterence. Feninsula Collegen Fish. Tech. Frogram, Fort Angeles, WA, p. 3x-s,

Feisentiohler, F.R. and N.A. Hartmann (197g). Effect of number of marked fish and years of repetition on precision in studies of contribution to a fishery. ODFW, Information Feport Series, Fisho No. $7 \mathrm{~B}-\mathrm{m}_{\mathrm{z}}$.

Reisenbichler, Fifi. and J.D. McIntyre (undated). Fequipements for integrating metural and artificial production of anadromous salmonids in the fracific Northwest. Unpubl. manuscript, U.马. Fish amd Wildife Gervice, Natn Fish. Fesearch Center, Seattlen WA.

Fieimentichler" R.Fin and d. D. Mcntyre (197\%). Genetice differences in growth and survival of juvenile hatehery and wild steelhead trout, Salmg gaipdrewin J. Fish. Fes: Ed. Canada 34: 123-123.

Feisentictiler, Fi.F. and J.D. Mexntyme (198E). Fequirememts for integrating natural and artificial production af anadmomous salmonidg in the Facific Norttwest. Uns. Figh and Wildijte Gervicen Niational Fishery Fesearch Center, Sewtuen Washington, umputhished.

Femner, A. (ed.) (1972-1977). Fishing liforination. WOAA and NuFs montrily reports.
 Alaska salmon fisheries, Fiat IV: southeastern alaska. Euli. U. B. Eurn Fich. 47: 4צ7-67\%n

Fich. W.H. and H. E. Holmes (1929) Experiments in marking
young chinook selmon on the Columbia River, 1916 to

Rich. W.H. and A.J. Sumela (19a7). Galmon tagging
 Vol. 43: 74-104 (Doc. No. 1022 issued July 27, 1927).

Ficker, W.E., (1972). Hereditary and environmentel factors affecting certain selmonid populations, in $\mathrm{Fin}_{\mathrm{H}} \mathrm{G}$ Gimom and F. Larkin (eds.), The stome concept jn Fewific salmon. U. British Columbia, H.F. Mactillan Lectures in Fisheries, Vancouver, Canada, p. $19-160$.

Fitter, J.A. (1775), Lower ocean survival rates for hatcherymeared At antik salmon (Salmo selar) storks released in rivers other than their mative streamsn International Council for the Exploration of the gea, Resource Dev, Eranch, Fishn and Mar" Servn, Halifax, Nova Scotia, Canada.

Robinson, M.\& (1976) " Atwas of North Facific Ocean momtity mean temperatures and mean salinities of the surface 1ayer. U. U. Nav. Oceanogr. Off. Fef. Fubl. 2,194 pp.
 Bay sockeye salmony in Selmond Ecosystems of the forth Eecific, W. J. McNeil and D. C . Himsworth, eds., osu fress anc osu sea Grant College frogram, \quad. $247-266$.

Foyce, W.F., L. E . Smith, and A.E. Hertt (J.76S). Models of ocean migrations of Facific salmon and comments on gutamee mewhanisms. NOAA Fish Bull. 66: 441-462.

Gholes, W.H* and Reis. Halloc: (1.979)n Arn evaluation of rearing fall-uri whinook salmon, Ducorbynchus Eschawysche, to yeariing at Feather Fi ver Hatchery, with a comparisom of returns from hatchery and downstream releases. Calif. Fish and Game bsi 2eg-25gu

Gloan, Wn (1927). Frovince of Eritist Columbia: report of the Commissioner of Fishertes for the year ended December 31st, 192t. Victorian Eritish Columbian Frinted by CuF. Banfield. Be pp.

Smith, A.F. and JnEw Lauman (19\%). Fisheries and Wildife Resources of the Middle Coast Basin, Oregon, and their Water Fequirements (revi eed). Oregon State Game Comission, Federal. Aid to Fish Festuration, Froject

Gmith, H.S. (iget) F Fisheries etatistics of Oregon, 1950-. 195S. Fish. Comm. Oregon Contrit. No. 22, Ge Pp,

Solaza, M.F. (1984), Felationships between visual wounts of
 and the actual mumber of fish present．ODFW，Figh Bivn，

世ffectiverness of stocting matchery coho presmodts to increase the rearing density of juvenile coho salmon in Orecom coastal str＂eamsn ODFW，lmformition Fieports

 12世 PF＂
 of migratory salmonids in riverss development of an
 Lowestoft， 11 PP ．
 Fisheries，1960－8s．OOFW and WDF，November， 1964,

Steding FiAn，F＂En Fieimers，and J．D．Hall（19\％2）。 Sowial interaction between juvenile coho（Gncorbynchus kisutch） and fall chinoot：salmon（wn tembwytscha）in Sixes Fiver，Oregomn J．Fisma Fes．Bd．Camada 27a 1787－174日．
 incubation chanmel on the survival of whinook salmon

Thompoon，k ．En and J, D_{n} Fortune，Jr．（196a）．Fisheries and Wh didite Fesources of the North Coast Emsin，Oregom，amod their Water Fiequirements．Oregon State Game Commission， Feder al aid to Fimh Fiestoration，Froject No，F－og－Fi－G， Job Non 3 ，Fortland，Oregon．
 Wildidfe Resources of the Rogue Easins Oregon，arid their Waterer Fequirements．Dregon State Geme Commission， Féderal Aid tofish Restorationn Froject No．F－Gg－Fi－G， Job rua．o，Fortlarn，Oregom．

Thompsong k．E，A．K゙ッ Gonith，ant J．E．Lauman（1972）． Fisheries and wildiff Fesources of the south Coast Basin，Oregon，and their Water Fiequirementen Oregon Stete Geme Commiseiom，Federal Aid to Fish Festoration， Froject No．F－

Uremovicti，En（1977）。 Etrayirg af fall wimowt from the Elt： Fiver Hatchery into gixes River， $19 \% 0-19 \%$ 日，GDFW，

Wtter，F．M．，Dn Compton，Gn Grant，Gu Nilner，J．Gcem，and ※，Wishar＂（1980）＂Fopulationstructures of inghqenous，
gedromid wpewies of the Facific Northwest, in Selmonid
 Hi meworth, eds: GSU Frese and GSU Gea Grant Goldege Frogreain, pn 2gs-go4.
 Oregonn Frac. Map", Fish. Comm, Eulla 2a 4\%-76.
 fall chinooks salmon in the Colnmbia Fixver. Fhan. Thesis. Dregom state Uriversity, 424 ppa
 fall chimoot malmon in the Columbia Fiver. Fes. Fipts. Fism. Comm. Oregon vol. $4(1): 3$: PP .
 industry of Alast:a on the results of the 174% tagging Experiments. Univ. Wash. "Fish. Fies. Iristit. Eirmular No. 2g, 21 ppa
 Balmon stocks of the North Americam west Coast: suggested tectimiques, frestiwater geogrephicar origins, stock abundance and hatchary production. Drafta Faca Mar. Fisha Comm.
 descriptive account of Facifícoast anadromous salmomid rearimg fawdilties and a cummary of their" releases ty

Wallis, J. (1954) : An Evaluation of the Eomreville selmon

Wallis, J. (1964) Am Evalumtion of the oxtow selmom hatchery, Clackamasy Fish Comm, Uren, mimeo., og pF.
 Envirommentel factors affectimg smoltification amd ear 1 y marime survival of amedromous malmomids. marime Fisineries Review: June.

Wendler, $H_{n} \mathrm{O}$ (196O). The importamce of the ocean sport fisheries to the ocean catch of salmon in the states of Wastimgtom, Oregom, amd Calj千ommian Calit. Fist" armo Game 46 (G).
 on the tagging oper ations in 19s. Contrib. Camadian

Williamsom, HaC (19\%9), Facifice selmon migretion: report on the taggin operations in 192 a , with additional returns from the opermaions of doze. Contrib. Canmedan Bioln Figh. 4: 45y-470.

Williamson, H. C . and W. A. Clemens (19az). Facifice salmon migrations the tagging operations at Outsino and kyumuot in 1927, with additional returns from the operations of 192 s and 1926. Ottawan Biol. Ed. Canada Eull. No. 20.
 Contribution of Columbia fiver hatcheries to harvest of fall chinook salmon (Dncombyctues tshawytscha). Fishery Eull. 67: 361.

Wright, A.T. (1964), A study of the carrying capacity of pint and chum salmon spawning areas in Alaska, in Studieg to determine optmun egcepement of ping and Gbum Eglmon jo Alesber Eart E. Alaska Dept. Fish and Game, Final Sumary Fieport for Contract No. 14-17-007-22 (U.S. Fish and Wildife Service).

SAXIONGddy

Appendix A Index


```
    A-1n Historical Markimg and Taggjng Studies.
    A-玉. Emtimatwed meari survival to catach for
        Oregon Froduction Aream.
    A-:" Spawming Surveys for Oregom Coastal Fall
        Chinool:
    A-&, Estimatwd contrjbution of swmecomstaj
        chimook: stocks.
```



```
        trends in eontribution to the Oregon
        Qf+5hor"e fiwtwery m+ Oregom coasta]
        chinook: stocks, by wetemershed or
        10cadity.
    A-S. Histomical estjmates of the Wommercial
        Harvest of Chinoot: in Oregom.
A-7. Estimated H#wchery revewses of chiroow:
        from Oregon Coastal streams, for 198S and
        1986.
Amg. Summary of diseases by matumery.
A-9, Susceptibility of Facific Salmonids to
        IHN virus.
```


mppendix $\because-1 . .1$

```
FEGOFD OF FECAFTUFED SAGMON TAGGED ON THE WEGT COAST
    OF VANEOHNEF ISLIAND IN 1925
(Only Oregon Oom&tal Fecover=ies are reported)
```

Rewurn of Sprimg Salmon tagaed off earkdey sound，vamwemver $\mathrm{L}=1 \mathrm{am}_{4} 1.9 \mathrm{w}$

Tag lo．	$\begin{gathered} \text { Patw } \\ \text { Iegged } \end{gathered}$	Dete Feceptured	Dey玉 Eree	Fjuce of Fecapture
929	\therefore Jun	12 Nov	157	Alsex Hiver＊
754	14 Amg	กo）datw	－－－－	
210\％	1.9 Jun	24301	85	Ti．L 1 amocot Bay
2110	17 Jun	29 Det	19	Nestucca Eivet
2015	20）3．17	27 gen	97	Siletz Fiver＇
2202	¢0 intm	2150	9%	Wocs Eay（Marshfieum）
	b．Jul	23 Sep	79	Nehaden fir ver
2179	1：	17 Wut	94	Coos may（Marsmfam］in）
2197	16 J	215 Sep	67	Coos Eay（Marshtield）
2045	19 Jul	22 5\％	65	In ocean oft OF coest（troll）
2050	19 Jul	19 Oct	92	Umpqua Fix ver
207\％	19 JuI	10 Oct	83	Unpqua Fid ver＇
2098	玉玉 Jut	21 Sep	60	Coos Eay（Marshtield）
225	玉世 Jul	9 Oct	78	Alsem River

 1．92w：mo coaztal recoverixes．
 December 区ist，192b，Victorian Britism Golumbian

APPENDIX A-1.2a to 1.2 k
 SCHEMATIC REPRESENTATIONS OF EARLY TAGGING AND MARKING STUDIES

From: Godfrey, H., 1968. Review of Information obtained from the tagging and marking of Chinook and Coho salmon in the coastal waters of Canada and the United States: Fish. Res. Bd. Canada, m.s. Rep. Ser. No. 953, Nanaimo, B.C.

Recoveries of chinook salmon tagged by Canada off the north and northwest coasts of the Queen Charlotte Islands in 1929 and 1930. Reproduced from Pritchard, 1934a.

Recoveries of chinook salmon tagged by Canada in north and central Hecate Strait in 1930. Reproduced from Pritchard, 1934a.

Recoveries of chinook salmon tagged by Canada off Barkley Sound In 1925. Reproduced from williamson, 1927, with later recoveries added (P111iamson, 1929, and Clemens, 1932).

Recoveries of chinook salmon tagged by Canada off Barkley Sound In 1926. Reproduced From Williamson, 1929, with later recoveries added (Wi111amson and Clemens, 1932).

Recoveries of chinook salmon tagged by Cinada off Kyuquot Sound in 1927. Reproduced from Willianton and Clemens, 193.?.

Recoverles of chinook salmon`tagged by Canada off the north and northeast coasts of Vancouver Island in 1930. Reproduced from Pritchard, 1934:.

Recoveries of chinook salmon tagged by Canada in the Nanaimo area in 1928. Reproduced fsom Clemens, 1932.

Recoveries of chinook salmon tagged by Canada off Quatsino Sound in 1951. Reproduced from Milne, 1957.

Recoveries of chinook salmon tagged by Canada from the traps at Sooke in 1952. Reprodued from Milne, $1 \lessdot 5$.

Recoveries of chinook salmon tagged by Canada off Kyuquot and Garkley Sounds in 1950. Reproduced from Milne, 1957.

Recoveries of chinook salmon tagged by the United States off the west coset of Southeast Alaska in 1950-1952. Redrawn from Parker and Kirkness,
1956.

保
Recoveries of chinook salmon tagged by the Unila provided by the hlaska Southeast Alaska in 1950-195.

Recoveries of chinook salmon tagged by the United States in the Swiftsure-Lemnard Island area in 1949. Reproduced from Kouffman, 1951.

Recoveries of chinook salmon tagged by the United States in the Unatilla Roef area in 1949. Reproduced from Kauffman, 1951.

Recoveries from 422 chinoots salmen tagged in the Columbia-Grays Harber areas, mareh-April 1959.

Recoveries from chinook tagged off Barkely Sound, Vaneouvap Island: 1925-30 12,478 tegged). A - recovered some year as tagged, B - racovered in subsequant Yoars; and 1949-50 (912 tagged), C-racovered same year es lagged, 0 - roo covered in subsequent years.

ecoveries, by manth of tagging, from shinook salmon tagged in the Columbian area, 1948.52 and 1955, racoverad same yoar as tagged. (Month of lagging ans number tagged each period indicated.)

Toggsa: Aaril Ast chinook tagged in the Columbias arest
Recoveries, by month of tagging, from shinook tagged ith of tagging indicaled) 1948.52 and 1955, recovered in yoan following tagging. (Month of lagging indical

Recoveries of chinook salmon tagged by the United States off the Columbia River and the coast of Oregon in 19481949. Reproduced from Van Hyning, 1951.

Recoveries of chinook salmon tagged by the United Statier, off West
Buach, Whidbey Ieland, in 1962. Dr;wn from data proyidrd by Washington State Department of Fisheries.

Apperidi: $A=2$

ESTMMTED MEAN GUFVTVAL TG CATCH FOR OFEGON FFODUCTION AFEFS

from: Cummings, 1979; McGie, pers. comm.

Comparison of peak counts of spawning fall chonook (in fish per mile) on three northern coastal streams.
appemdix AM.4n

ESTIMATED CONTKXEUTION OF SOFE COAGTAL CHINOOK GTOCK (1)

Appendi: A-5. 1
Freliminary evaluation of long term trende in contribution to the Oregon offehore fishery of Oregon coastal chincok stocks. by watershed or locality. (In alphabetical order)"

The information reported in this preliminary evaluation represente an attempt to synthesize pertinent information on Oregon coastal chinoot stocts. A qualitative review of the available information is presented for most of the coastal watersheds where chinool: stocks are found. The contribution of privete hatchery Chinool: as well as native chinoot: is included in this summary: howeverg information on these sources is limited. For each watershed, CWT deta is summarized with respect to contribution to the Oregon offshore fishery. These data are supported by fin mam: studies and historical marking and tagging studies. Faw data and details of information from the historical studies are presented in Appendix A-1 and Appendix $\mathrm{C}_{\text {. }}$

No attempt was made to assign a percentage to the contribution of various stocks to the Oregon offshore fishery: however, information of this nature is available and is included in Appendix A-4. Fiecent CWT Feleases are peported to BY 1982.

Aleea
CWT data: Erood year (EY) 1978 and EY 1977 releases of native fall chinook temded to contribute to the Eritish Columbia (EC) anc Alaskan (Ak) figheries, but contribution varied between year classes. For example, BY 1977 three-vear olds contributed heavily to the Califormia fichery.

Fin Mark Stucies: Supports results of the CWT studies but shows that major contribution was to the washington (WA) fishery rather then the EC and At fishery. Festricted fishing seasons off Wachington in recent years may account for this change.

BY 1966 and $E Y 1967$ releases of Columbia Fiver tule stoc: at Lint glough showed no concentration of contribution mhinool: contributed relatively equally to California (CA), Oregon (OF) and WA fisheries. However" because Ak and BC data were not included, it is undetermined if contribution was primerily to the northern fisheries.

EY 1767 to $B Y 1972$ releases of immunized groups and control groups (vibriosis experiment) in the Alsea contributed heavily to the WA fishery.

EY 1771 and EY 1972 immunized groups of Columbia Fiver tule chinook released in Lint glough did not contribute heavily to the WA fishery but were more equally divided among OF, WA and EC (BC only from EY 1972)

Historical. Studies: Supports results of the CWT studies.
From 1925 tagging studies off Vancouver Island and Dueen Charlotte"s IElands, there were two recoveries of tagaed fish in the Alsee. From the 1948 to 1762 tagging study from Cape Lookout to Willapa Bay, there was one recovery in the Alsea (Van Hyning, FhD thesien 1973) "Henry (196,4) noted the etraying of Tillamook tagged fish to the Alseag therefore, some of these early recoveries were not necessarily flsea stack chimoot:

Fecent Feleases of Alsea fall chinook with coded wire tags were from BY 1790 to BY 1982.

General: From the various marking and tagging studies, Alsea fall chinook tend to contribute more to the northern than to the southern (includes of and CA) fisheries. More information is required to determine whether most of the contribution is to the $E C$, AK or WA fisheries. Factors that influence contribution are the fishing seasons and the fishing quotas for the different fisheries.

Eurnt Hill Creets Eurnt Hill Hetchery
CWT data: Fall (Fogue, Lobster Creet: stock) and spring (Fogue stock: chinook: of EY 1979 were released in Burnt Hill Creekn There is not enough information availate at this time to mote any trends in contribution: however, there $i s$ a preliminary indication that contribution is primarily to the $O F$ and WA fisheries.

We Fin Mart or Historical information exists.
Fecent Feleases: Fall chinook of $B Y 19 e 1$ and spring chinoot of EY 1980. 1981, 1982 were released in Eurnt Hill Creet: All of these are imported stocke.

Qemeral: There are too few data on the contribution to the offshore fisheries of Eurnt Hill Chinool salmon to indicate a trend. To evaluate the performance of the fogue stoctse released
at Burnt Hill, the recoveries should be compared with the Fogue Fiver releases of Rogue Fiver stocks.

Chetco

EWT data" BY 1977 to 1979 releases of hatchery fall chinook: contributed heavily to the CA and DF fisheriesu Limited data is available for the recovery of 4- and E-year oldsu OF contribution
 thought to contribute most heavily to the fisheries, the average contribution of Chetco chimool to the of fishery is about $72 \boldsymbol{y}$ bthie estimate is high and should include differences in survively, and number of merbed fish peleesed).

Fin Mart: Studies: EY 1969 to 1971 released from the Chetco support the tremds observed in comtribution from the CWT data. DF contribution, however: is slightly lower at about 5 G $\%$ while [A contribution is about 41% 1\% or less of these Chetco fish were recovered in Eritish Columbia and Alasta fisheries.

Historical Studies: A fish tagged north of Foint Arena, $G A$ in 1948 was pecovered in the Chetco Fiver in 1948 (Fry and Hughes. 1951)"

Fecent Feleases: Fall Ghimoot: of BY's Bo to ges were released from Chetco Fiver.

Generel" The Chetco fall chimoot: tend to contribute heavily to the local fisheries. This is supported by the early tagging and fin mart: studies.

Coos Bay
CWT data: No easily discernible trends are apparent: generallys Coos Eay chinook are caught in CA: OF:, and WA fisheries.

Native coastal fall chinoot: from Ey 78 contributed heavily to the CA fishery (100%), but the number of observations is limited and there is no information for age S returns. EV 80 ghowed a glightly more northern contribution (OF and WA), but data are sporadic (only half of the information for age exists).

Anadromous-hatchery fall chinook: (Alsea and Trase: Etock) tended to contribute to the of fishery, but some go north to Alaska-no ca contribution was recorded (cateh pre-g3).

Anadromous-hatchery spring chinoot: (Fogue stocl:) contribute heavily to the OF fishery.

No fin mart: information exists except for trangalants.
Historicel observations. 1925 tegaing study of Hippa Island (Oueen Charlothe Group) tagged 4 fish which were recovered bo-94 days later in Coos Eay. 1 Coos Bay fieh was tagged off Coos Eay and
returned to the Coos Fiver 10 days later " Nothing much can be sad about this observation.

Fiecent releases: BY Gl and EY ge were released.
General " Limited information prevents the emergence of any readily apparent trends. Native fall chinook Eeem to contribute to the local fisheries but this cannot be substantiated by the present information base. Anadromous spring chinoot: (Rogue stock) contribute heavily to the oregon offshore fishery. Amadromous fall chinool contribute primarily to the northern fisheries.

Coquille River

Na CWT data are available for Coquille stoc: contributiona
No fin mark data are available except for transplants.
No historical observations exist.
Fecent releases: EY ES fall and spring chinook were released (need returns before speculations about contribution (an be made).

General" No information is available on the offshore contribution of Coquille chinook:

Elf: Fiver

CWT data: In general, Elt: Fiver fish go to of and EC, but large variations exist in contribution between broods and year clasees.

Casetal hatchery fall Ghinook released from the Elk River tended to contribute more to the of fishery than to any other fisheryn although Eritish Columbia tates a significant portion of the catch. This is baged on estimated recoveries of age 3 and 4 fish from Ey 77-79. Gnly three By 79 releases have data for Z year alds: these data are in accord with the trend previousely noted. Elt: River fish are also caught by the CA, WA, and Alasta fisheries but to a lesser extent bexcept for several instances were Wh catch was high).

By 7 freleases were caught mostly by the of fishery, but wa and EC were also very important.

By 74 releases (2) also supported the of contribution trend, but EC, AKy and WA contributione were also importants some contribution to the CA fishery was made by 4 year olde.

Fin marl: informationn Fall chinoot: data indigated a wide dispersel; but contribution wes predominantly to of fisherya

EY 67 had very few recoveries (4 fish).

to WA and CA fistiery.
EY 70-79 contributed primarily to of fisherya but less so then
in previous years. OF took about 49-Ge\% of the catern wA took: about 2S\% while EC (14\%) A At: (S\%) and CA (10\%) also toot: Fish from the Elk Fiver.

Mu historical observations were found.

Fiecent releases: By go-8x hatchery fad chimoot: were released from the Ell: Fiver.

General" Elf: fall chinoot: are caught in both the Northerni and local fieheries. However, it is believed that this stock is predominantly northward migratimg and that the contribution estimates contain a bies due to the extended fishery that operates off the EJf: Fiver. This is supported by the observation thet most af the Elk fish that contribute to the logel fighery are cubght Jate in the season when the extended fishery is operatirig (J. Nicholas, pers. commn) "

Nehalem Fiver

No CWT diata were found.

No fin mart: data were foumd.

Historical observations: 192s tagging study off Hippa Island, Queen Charlotte" E Group tagged a fish which was recovered in the
 Henry (1964) noted the straying of Tillamool: tegged fish to Nwhalem.

No recent releases were made.
Generna. No information on contribution js available except for one hietorical observation from Queen Charlotte Islands.

Mestucce Fiver (Cedar Creet; Hatchery)

CWT datan Fall EY 77 to EO (Trast stock) indicated that comtribution of this stock is to the northern fisherjes (predominantly EC and AK゙). Gome fish recovered in CA but nome in OF and WA. Date for $198 \mathrm{~B}-4$ are missing.

Spring EY 77 to BO (Trask Etoct:) showed widespread contribution (large Etandard deviations between release intormation exists). Contribution is more or less even between DF, WA: EC: AK fisheries (1ess so to [A fishery). DF
contribution is about 30% but varies widely.
Fin merk information: Spring chinook: have a different contribution pattern than fall chinook:

EY 67 and 6 contributed to $C A$: WA, and $O F$ fisheries with $O F$ contribution at about 30%

Historical observations: 1925 tagging study off Hippa Island, Oueen Chamlotet Group, tagged a fish which was recovered in the Nestucca Fiver 132 days later.

Fecent releases: EY $B 1$ hatchery fall and spring chinook were released.

General: Nestucca fall chinook tend to contribute heavily to the northern fisheries whereas the epring chinook show a more scattered distribution in the fisheriess although their contribution is still primarily northerm.

Fogue Fiver (and Applegate)

CWT data: Hatchery spring chinool were released in the fogue with Ey 77 to 80 contributing heavily to the $O F$ and CA fisheries (about 5o\% each). Mostly age 4 fish were caught. Although data are incomplete (missing bS and g4), no recoveries were made in EC or AE fisheries.

Fall native chinook released in the fogue with $E y 78$ to Bo showing a similar contribution pattern as epring (about 50\% each to CA and OF fisheries). Data are incomplete for 83 and 84.

Fall mative chincot: released in Applegate--only Ey 77--contributed to $C A$ and $O F i$ but not enough information was gathered to diecern a trend.

Hatchery spring chinook from Cole Fivers Hatchery of Ey 75
also showed a southern contribution (OF and CA heavily favored). A few fish went to WA. Study was for Vibrig. but control groups indicated that contribution was primarily of and CA.

Fin mart: informationa Data indicate primarily a CA contributiong but some shift in this trend is noted after $E Y$ os u OF and northern contribution increased at this time.

Spring chinool: of EY 58 to bs contributed very heavily to the CA fishery (about 85%). Contribution to the OF fishery was gememally lese than 10% Felatively few fish were also caught in WA and BC . However, there was no sampling in northern areas in early years and the estimates are highly dependent on fishing seasons and sampling rates.

Gpring Ghinook of EY ó to 72 contributed very heavily to the CA fishery but to a lesser extent than the earlier years (about 48\%). OF contribution increased substantially (to 45\%) at this time. BY 6' \quad had no recoveriess and generally there were few recoverjes in WA and EC.

Fall chinoot (Lobster Creek) of EY 62. b4. and 65 contributed very heavily to the CA fishery (about 75\%) " Contritution to the of
fishery was greater than spring chinook during thie time babout 20\％）。

Fall chinook（Lobster Creer）of By bs to 70 contributed heavily to the ca fieheryn but to a lesser extent than the previous years．During years of poor survival（eagu By b7 and $4 B$ ），
 was an incmeased contribution to the northern fisheries．

Historicel observations：In the CA tagoing study from 1．742 to 1950： 5 figh were tagged north of Foint Arena and later returned to the Fogue Fix ver．

Fecent Feleases（including Applegate）：Hatchery spring of Ey Bl and native fall of BY 81， $82 y$ and ge were released．

General：Fogue spring and fall chinook appear to contribute heavily to the local and southern fisheries．This is supported by early tagging and marting studies．

Gelmon Fiver

CWT deta：Native fell chinoot releases of EY 7 to to 7 （ 9 feleases per year）contributed primarily to the northern fisheries（EC and Aぐ）${ }^{\circ}$ Gome fish from all age classes were caught jn the CAy afin and WA fisheries but in relatively few numbers．

No fin marre information exists．

No historical observetions were found．

Fiecent releases：Two releases of Ey go hatchery fall chinool：were made．Hatrhery fall chinook of EY ga and gs（1 release each）were alsoreleased．

Ganeral＂Data are limited but there is an indication that the netive fall chinool：contribute to the northern fisheries．

Si．］eta River

No CWT data were found．

No fin marl：information was foumd．

Historical observationsn Tagging study off of Hippa IElandy Duewn Charlotte group in 1925 tagged a fish that was recovered 97 days later in the Giletz Fiver．

No recent releases were found.

General: Insufficient information to evaluate siletz chimoot: contribution to the offshore fisheries. One historical ofeervation was made off Hippa IElande Dueen Charlotte IElands.

Siuslaw Eay

CWT datan Native fall chjnook of EY 7g, 79 and Bo were released but too litule data exiet ta indicate a trend. Ey 76 contributed primerily to the morthern fisheries (EC and Afs). Age 3 information for EY 79 and bo showed a more widespread contribution (including OFF and WA, but no CA fish).

DOMSEA fall Ghjmoot of BY 78 and 79 had few returns--OF and Ar: recoveries were greatest.

Na fin mart: information was found.
No Mistorigel observatjons were found.

Fecent releesesu EY Bl was releaseda
Beneral: Insufficient data to analyze for a trend. dativefall chinook appear to be caught in the nothern fisheries (EC and At).

GiNES Fiver

Na CWT data were round.
Fin mart intormation" Wild fall Ghinoot of EY bo and 67
Gontributed primarily to northerm fisheries (WA and BC), but in one release with good survival Eome (19\%) were caught in the CA fishery.

Historical obefrvations" A non-definitive recovery off Fort orford was recorded by Van Hynimg (tgei) of a fish tagged July 27: 1946 amd recovered Dctober 24: 1948 in the sport fishery.

No recent releases were foumd.
General: InEurficient information to analse for trends.

Tillamoot: Eay (inciluding Trast: arid wilson Fiveres

By 77 to 77 contributed primarily to northern fisheries with most fish caught in EC：Felatively few LA and DF recoveries（less then b\％Were made Both age \bar{z} and 4 fjeh contributed heavily：while escapement was mostly comprised of age 4 and 5 fish（data rot yet available for 8 a and 84 ）．

By 74 coritributed heavily to Ak fishery，although some went to WA（few to the Columbia Fiver）． 4 year old fish were the heavy contributors．

Fin mark：informatiom：Ey \quad f released at Cape Meares Late （Columbia Fiver stock）contrituted primarily to the wa fishery （BC and Ak contributions not reported）．Some fish were caught in CA and DF fisheries（CA sport and DF troll）．

Fall chimook of EY 69 released at Cape Meares Late fColumbia Fiver stocki contributed mostly to wA fishery ancimoderately to Whe DF fishery（about 2 （3\％）。

Fall chinook of EY 70 released in Trast：Fiver contributed heavily to Af fighery and some to wA fishery（no recoveries weme made in CA or OF？．

Fall chimoot：of Ey $7 \underset{3}{ }$ released in Trast：Fiver contributed only to Northern fisheries（especially 4 year alas）．

Historical abservations：From 172S tagging study off Hippa Islandy Dueen Charlotte Groupa 1 fish was Fecovered in Tillamoat；Exy （WiJA1amson 1927！Williamson 1927）．
Eergman（17G马）moted the Tillamoot：recovery of a fish tagged in 1959－60 study off Gray s Harbor．
Bergman（17日安）also noted a wilson Fiver regovery of a fish tagged in 19bl between the Columbia Fiver and Tillamoot：Eay＂ Henry（1964）moted the straying of Tillamoot：tagged fish to Alsee and Netialem．

Fecent releases：Four releases each of EY 92 and ge Trast：Hetchery Fell chimoot：were made．One release each of Ey go and Bl Trast： Hatchery Spring chinaot：were made．Spring chinoot：of EY B2 and gS were released in Trask Fiver and McGuire Fieservior．

General：Eoth the spring and fall chinoot：from the Tillamoot： system（Trast：stock）tend to contribute heavily to the northern fisheries．

Umpqua Fidver

CWT detan Hatchery spring chinoot：of EY 77 to go contributed substantielly to all fisheries except Ak＂Most of the fish weme caught in the OF fishery（39－89\％），but variations between year cidasees，and within years（eng．2 releases of EY 78 differed） exist．The $\underset{G}{ }$ year old fish contributed most heavily to the fisheries：four－year old goring chinoot enter the river before the fishery begins．＂
 between 34 and bo\% to the on fishery. Fecoveries were spread from CA to EC (MO AK) amd varied according to year. Only in EY og were recoveries from CA (SO\%) greater than those from the DF (9%) fishery. Survival was moderate for all yeare except Ey bs (wher EC Eatch was high--about 34%-and CA Gatoh was zero) "

Sprimg ehinook of BY 58 to 72 were fin cilipped and returns indicate thet the spring chinoot: tended ta \quad antribute evenly to the CA, OF, anc WA fisheries. The contribution to the OFi fisheries was greater than to $C A$ and WA overall but varied considerably from year to year (17 to 70%) "Alson the percentage iontribution of spring chimook to the DF fishery was less than that of fall chinookn EC and AE meported only a few recoveries. Survival to catch and escapement for most years was exceptionally high (o, bs to $14 \ldots \mathrm{O} \%$) " BY 72 and 73 control groups from vibuig study contributed most heavily to the DFi fishery, especially $\underset{\text { comear }}{ }$ olds. Some fish (but not many) were caught up rortha EY 74. 75 and 76 Gatch are imaomplete and fin mart recovery was being phessed out.

Historical observations do not support trends observed from recent studies. Eeceuse the race (Eng. spring or fall) of the recoveries was not reported, it is possitue that the northern migreting fish were fall chinookn From 192 S tagoing study off Hippa Islandy Duemen Charlotte"s Eroup! 2 fish were reaovered in the Umpqua (wiliiamson 1927; Williamson 1929), From 1959-60 tagging off Gray"e Harbor, 1 fish was recovered in Uinpqua (FMFE $1 \underset{\text { a }}{ }$ and $15 t h$ annual reports).

Fecent releases: Two releases each of Ey Bl and By aq hatchery spring chinoot: were maden Hatchery spring chinoot: of EY BS (1 releasel were released.

General" Uinpqua spring chimoot: tend to contribute heavily to the local and southern offshore fisheries. The fin mert studies suppart this statement but the historical studies do not. However, the eawly studies may have caught Jmpqua fall chinook: which are believed to be more northerly migreting than the spring chinoot:

Yaquina Eay

CWT data" Native Yaquina fall Ghimoot from EY 77 and 78 contributed heavily to the northern fisheries (few to ofin none to
 DreAqua fall chinook of EY 77 to 80 meleased in Yaquina Gontributed primarily to the Af; fisherys but some were caught in of end WA (nome in. CA).

OreAqua Epring chinool: of Ey 77: 7日, and Bo released jn Yaquine montributed to the $\square F$ arid wA fistreriess howeverw, returns were so low in most ajses that trends were not easily discermed. The gprimg chinook were Trast stot: that generally migrate north.

No fin mark information was fourid.
No historical observations were found.
No recent releases were found.
General: Yacuina fall chinook tend to contribute to the nomthern fisheries (Native and DAF stocks). Eecause of poor survival, limited informetion is available on gAF Yaquina spring stocks. From 1982 to 1985, the production stock has been OAF fall chinook: In 1790 and 19日1. Trast: and GAF stock were released! the 1.980 release was a cross. Yaquina mative fall chimoot: were released in 1979 and a University of Washington stock was released in 197日. According to Fatti (pers. comm.), the performance of the Yaquina stoct: was superior to the other stocks: the GAF brood stoct partially is comprised of the native stock.

APPENDIX A-6.

Historical estimates of the commercial harvest of chinook salmon in Oregon.

From: Mullen, R. , unpublished.

1/ The following figures and tables are based on preliminary estimates and are subject to change.

CASES, ESTIMATED POUND (ROUND), AND ESTIMATED NUMBERS OF CHINDOK SALMON PACKED ON OREGON COASTAL RIUERS, 1892-1922.

YEAR	CASES	EST. POUNDS (THOUSAMDS)	EST. NUMBER (THOUSANDS)
1892	.10,000	680	30
1893	8,929	607	27
1894	5,036	342	15
1895	22,328	1,518	67
1896	45,967	3,126	138
1897	33,349	2,268	100
1898	33,971	2,310	102
1899	19,130	1,301	58
1900	2,636	179	8
1901	8,826	600	27
1902	7,572	515	23
1903	12,008	817	36
1904	22,183	1,508	67
1905	37,700	2,564	113
1906	35,823	2,436	108
1907	19,910	1,354	60
1908	16,954	1,153	51
1909	7,562	514	23
1910	17,108	1,163	51
1911	30,326	2,062	91
1912	15,773	1,073	47
1913	7,668	521	23
1914	.28,957	1.969	87
1915	28,216	1,919	85
1916	42,573	2,895	128
1917	41,533	2,824	125
1918	34,586	2,352	104
1919	26,069	1,773	78
1920	16,115	1,096	48
1921	15,632	1,063	47
1922	12,270	834	37

THOUSANDS OF CASES

$\tau \cdot 9-\forall$ x!puəddy

POUNIIS (KOUND) OF CHINDOK SALMON LANIEN DA OREGOR COASTAL RIUERS, SOUTH OF THE COLUMGIA RIUER, BY MOHTH, $1923-1961$.

YEAR	JAN	FEB	MARCH	AFRIL	MAY	JUNE	JULY	AUG	SEFT	OCT	HOV	IEC	tutal
1923	---				204,486	544,190	246,027	402,073	818,636	325,939	65,582	345	2,889,993
1924	63				103,557	266,819	337,265	1067,748	1100,959	631,660	113,654	1,107	4,044, 821
1925	217	1,093	14,988	35.260	57,328	243,441	416,596	1126,299	1227,592	621,736	83,091	7,926	3,835,567
1926	5,876	921	18,748	36,659	66,433	220,756	356,609	626.942	732,729	462,985	63,462	2,073	2,594,193
1927	1,424	648	6,286	16,536	71,600	219,641	285,169	274,322	624,065	244,995	25,103	$\begin{array}{r}-418 \\ \hline\end{array}$	1,770,207
1928 1929	333 1.100		140 10419	26,800	129,439	126,479	120,434	258,837	386,390	334,097	76,857	3,385	1,462,991
1929 1930	1,100	3,007 7,077	10,419	18,915	95,432 115,331	142,107	81,521	185,793	402,129	180,184	28,468	2,221	1,151,296
1931	1.213	7,077 5,002		13.776	115,331	134,227	65,797	157,022	305,395	225,773	17,147	390	1,041,935
1932	6,976	7,968	9,007	20,831	169.836	260,4	94,073	197,046	374,987	302,078	45,483	5,992	1,203,398
1933	\$1	6,328	3,737	13,415	185.75:	229,720	254.826	322,267 125,242	397,608 251,028	294,190 161,575	23,417 15,827	959 6.619	$1,739,986$ $1,254,112$
1934	4,577	2,433	5,429	268	99,875	184,363	173,513	203,495	211,965	123,684	18,027	3,323	1,020,992
1935	6,657	1,479	2,475	10,345	77,200	92,053	111,307	128,572	246,035	136,732	15,616	1,599	$1,830,070$
1936 1937	2,317 699	3,400 381	2,053 2,180	14,569 30540	39,836	46,904	70, 58	153,221	468,271	359,479	30,059	1.947	1,212,652
1938	497	381 1,741	2,180 1,114	30,540	35,082	59,395	66,502	139,026	359,785	433,956	17,380	341	1,143,593
1939	481	2,234	1,553	8.996	912	46,414	51,231	146,634	375,814	299,403	36,653	1,323	981,564
1940	640	1,894	225	4,229	41,573	72,638		83,370	271,661	337,521	48,893	1,561	920,391
1941	840	1,256	451	7,024	49,639	57,355	72,876 72,103	137,036	264,468	231,938 199.084	16,310 19,687	944	898.012
1942	558	944		7,229	36,512	25,820	18,168	136,860	264,468 204,567	199,084 315,299	19,687 39,817	1,197 1,433	822,066 733,221
1943	561 1.751	2,945	350	4,783	20,157	20,033	7,038	29,855	184,870	263,810	23.785	2,709	568,906
1944 1945	1.751 62	4,694 2,337	668	5,271	13,220	9,817	8.090	15,341	172,258	224,310	23,328	1,401	484,347
1946	5,072	2,337 1,337	67	136	5,956	3,549	4,897	13,839	226,288	315,630	42,759	1,263	619.312
1947	¢,072	1.33	6.		4,194 3,103	2,333 1,936	3,474	12,496	142,489	270,303	37,279	1,774	487,925
1948	---	---	---	-.-	- 55	1936 13	18,88	15,700	4,59,436	199,069	23,568	1,136	405,716
1949	---		---		25	13		3,653 4,025	165,385 127.465	153,927 178,381	27,461	1,065	351,549
1950	---			---				4,023	127,465	178,381	27,344	756	337.996
1951	---					---		1,225	96,612	98,750	27,732	4.886	229,205
1952	---	---						2,183	90,827	113,324	31,560	3,476	211,370
1953	-							6,404	104,211	145,653	73.497	3,491	333,256
				---	---	---	---	9.634	114,258	109,912	31,694	758	266,256

YEAR	JAN	FEB	MARCH	APRIL	MAY	JUME	JULY	aUd	SEPT	OCI	HOY	IIE:	TOTAL
1954	--	---	---	---	---	---	---	14,638	156,730	129,13\%	27,907	1,544	329,956
1955	---	---	---	---	---	---	---	9,991	133,669	114,088	23.915	1,434	283,097
1956	---	---	---	---	---	---	- --	8,884	93,437	56,556	13.305	1,679	173.861
1957	--	---	-	---	---	---	---	---	--	--	13,021	----	12.021
1958	---	---	-	--	---	---	---	--	-	---	29,003	---	27,003
1959	---	---	---	---	--.	---	---	---	---	---	28,542	---	28,542
1960	---	-	---	---	-	---	-	---	---	---	16,940	--	16,940
1961	---	---	---	-	---	---	---	---	---	--	9,814	---	9,814

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINOOK SALMON LANDED ON OREGON COASTAL FIUERS, SOUTH OF THE COLUMBIA RIUER, 1923-1961.

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON OREGON COASTAL RIVERS, 1923-1961.

CASES, ESTIMATED POUNDS (ROUND), AND ESTIHATED NUABERS OF CHSNOOK SALMON PACKED IN OREGON, 1892-1922.

YEAR	CASES	EST. POUNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	354,267	24,090	1,292
1893	297,702	20,244	1,086
1894	356,142	24,217	1,302
1895	467,237	31,771	1,698
1896	416,910	28,350	1,498
1897	466,102	32,135	1,710
1898	363,537	25.490	1,352
1899	274,954	20,072	1.070
1900	265,028	19,424	1,045
1901	8,826	600	27
1902	278,152	23.549	1,265
1903	313,770	28,734	1.541
1904	342,561	33,291	1,780
1905	364,806	35,593	1.894
1906	347,157	32,406	1.724
1907	278,343	25,604	1.367
1908	227,050	20,896	1,115
1909	169,693	17,635	946
1910	261,393	26,489	1,416
1911	436,188	38,664	2,064
1912	236,090	22,461	1,200
1913	199,784	19,905	1,068
1914	318,421	27,378	1.457
1915	434,702	34,046	1.817
1916	437,739	34,888	1,853
1917	445,170	32,346	1,716
1918	435,538	31,601	1,681
1919	418,194	32,098	1.713
1920	436,582	32,190	1.724
1921	283,484	22,695	1,209
1922	249,500	18,749	1,003

ĢASES OF CHINOOK SALMON CANNED ON OREGON RIVERS, 1892-1922.

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED NUMBERS OF CHINOOK SALMON PACKED ON THE KOLUKBIA RIUER, 1892-1922.

YEAR	CASES	EST. PGuNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	344,267	23.410	1,262
1893	288,773	19,637	1,059
1894	351,106	23,975	1,287
1895	444,907	30,253	1,631
1896	370,943	25,224	1,360
1997	432,753	29,867	1,610
1898	329,566	23,180	1,250
1898	255,824	18,771	1,012
1900	262,392	19,245	1,0.37
1901	- - -	-mos	---
1902	270,580	23,034	1.242
1903	301,762	27,917	9,505
1904	320,378	31.783	1.713
1905	327,106	33,029	1.781
1906	311,334	29,970	1,616
1907	258,433	24,250	1,307
1908	210,096	19.743	1,064
1909	162,131	17,119	823
1910	241,285	25,326	1,365
1911	405,862	36,602	1,973
1912	220,317	21,388	1,953
1913	192,116	18,384	1,045
1914	289,464	25,409	1,370
1915	406,486	32,127	1,732
1916	395,166	31,993	1,725
1917	403,637	29,522	1.591
1918	400,952	29,249	1,577
1919	392,125	30,325	1,635
1920	420,467	31,094	1.676
1921	267,852	21,552	1,162
1922	237,230	17,915	966

THOUSANDS OF CASES

$0 \tau \cdot 9-\forall$ xTpuədd \forall

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED NUMBERS OF CHINOOK SALMON PACKED ON THE ALSEA RIUER, 1892-1922.

year	CASES	EST. POUNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	---	---	---
1893	1,260	86	4
1894	440	30	1
1895	1.700	116	5
1896	3,500	238	11
1897	1,800	122	5
1898	4,296	292	13
1899	2,150	146	6
1900	---	---	--
1901	695	47	2
1902	701	48	2
1903	1,031	70	3
1904	1,000	68	3
1905	2,500	170	8
1906	3,702	252	11
1907	800	54	2
1908	1,200	82	4
1909	1,119	76	3
1910	2,500	170	8
1911	1,161	283	13
1912	3.731	254	11
1913	1,607	109	5
1914	4,546	309	11
1915	1,668	113	5
1916	2,624	178	8
1917	2,727	185	8
1918	2,000	136	6
1919	2,512	171	8
1920	3,367	229	10
1921	---	---	---
1922	--	---	-mo

THOUSANDS OF CASES

ZI•9-V x!̣puədd \forall

FOUNDS (KOUND) OF CHINOOK SALMON LAKOED ON THE ALGEA KIUER, HY HONTH: $1923-1956$.

YEAR	JAN	FEB	March	Arril	May	JUME	Hey	aus	SEPT	0 CT	dov	Hec	(1) TAL
1923	---	---	---	---	---	25,706	---	---	2,901	3,015	603	---	32,225
1924	---	---	---	---	6,116	29,053	---	---	13,616	13,747	549	---	63,116
1925	---	---	---	---	7,391	18,651	11,000	---	12,222	16,438	2,282	10	69,494
1926	---	---	---	---	1,158	8,651	8,012	---	2,090	6,527	1,481	9.4	28,013
1927 1928	60	----	---	---	198	11,928	18,787	---	4,918	4,014	499	---	40,344
1928 1929	60				403	9,385	13.032	---	1,551	3,247	2,500	27	30,205
1929 1930	----	1,426	---	---	1,119	10,912	7,686	---	4,616	4,893	16.7	-..-	30,819
1931	----	6,924 2,161	---	---	2,362	6,587 2,407	4,037 5,149	----	3,142	6,488	168	-..-	27,708
1932	-...	2,134	---	---	2,622	16,740	5,149 21,115	132	4,183 3,979	5,139 5,372	54 1,035	---	19,093
1933	---	2,581	---	---	3,742	18,859	52,665	1,728	3,979 8,454	5,972 10,829	1,035 2,222	52	53,629 79,132
1934	979	---	---	---	12,440	23,425	52,767	29,101	6,160	10,829 8,780	2,234	52 9.3	79,132 134,121
1935	4,162	---	---	---	1,681	10,808	32,691	27:954	8,802	7,359	1.049	176	94,682
1936 1937	1,735 297	----	---	---	1,358	7,933	32,839	27,771	17,679	20,191	4,143	---	113,649
1937 1938	297 65	---	----		33	3,128	12,632	12,001	8,139	25,231	1,032	---	62, 173
1939	178	---	---	---	1,34\%	4,819,	11,033	18,103	10,329	7.031	1,270	111	53,143
1940	28	---	---	---	756	4, 4,751	13,420	19,476	14,194	10,415	579		64,306
1941	471	---	---	---	80.5	3,558	15.576	27,590 21.329	11,293 12,844	6,956 13,238	340	399	68,427
1942	200	---			172	256	8,010	13,400	14,654	19,436	9.907	795	72,256 $65,0,35$
1943	243	---		---	---	274	2,290	7,351	16,332	9,827	359	---	65,0.55
1944	1,586	---	---	---	---		561	1.848	10,142	5,013	704	---	19,85.9
1945 1946	---	---	---	---	---	---	634	1,243	10,089	8,317	2,131	---	22,414
1947					---	---	16	735	9,506	10,683	293	---	21,23.3
1948	---						430	6,719	16,653	15,193	505	---	39,500
1949		---						---	29,750	12,121	62.4	-..-	42,495
1950	---							---	24,274	12,802	906	---	38,002
1951		---							25,656	12,130	176	----	37,962
1952	---	---						---	24,696	5,15 ?	---	----	29,853
1953	---	-						---	26,003	9,453	3,564	\cdots	39,020
								---	33,556	20,679	3,680	---	57,915

CONIINUED

YEAR	JAN	FEB	HARCH	APRIL	day	JIME	IPIY	AUS	SEFT	OCT	HOU	UEC	Til ${ }_{\text {al }}$
1954	---	---	---	---	-*-	-..--	- ...-	---	38,402	17.436	3,750	----	57,588
1955	---	---	---	----	.-.	---	---	---	35,342	18,734	4,204	--.-	58,282
1956	---	-	---	--.-	---	---	---	---	24,284	5,276	1,348	-	30,908

FOUNDS (ROUND) AND ESTIAATED HUMGER OF CHINOOK SALMON LANDED ON THE ALSEA RIUER, 1923-1956.

YEAR	POUNDS	EST. NUMBER (THOUSANDS)
1923	32,225	1
1924	63,116	3
1925	68,494	3
1926	28,013	1
1927	40,344	2
1928	30,205	1
1929	30,819	1
1930	27,708	1
1931	19,093	1
1932	53,629	2
1933	99,132	4
1934	134,121	6
1935	94,682	4
1936	113.649	5
1937	62,493	3
1938	53,143	2
1939	64,306	3
1940	38,427	3
1941	72,255	3
1942	65,035	3
1943	36,672	2
1944	19,854	1
1945	22,414	1
1946	21,233	1
1947	39,500	2
1948	42,495	2
1949	38,002	2
1950	37,962	2
1951	29,853	1
1952	39,020	2
1953	57,915	3
1954	57,588	3
1955	58,282	3
1956	30,908	1

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED NUMEERS OF CHIMOOK SALMON PACKED ON THE COOS RIUER, 1892-1922.

YEAR	CASES	EST. POUMDS (THOUSANDS)	EST. NUKBER (THOUSANDS)
1892	\cdots	-0.	$\cdots \infty$
1893	--m	--a	--s
1895	163	11	<1
1895	5,110	347	15
1896	13,000	884	39
1897	6,200	422	19
1898	3,142	214	9
1899	1,273	87	4
1900	-0-	--m	\cdots
1901	1,215	83	4
1902	412	28	1
1903	--0	---	-me
1904	2,033	138	6
1905		-	\cdots
1906	2,043	139	6
1907	-->	---	∞
1908	\cdots	-mom	--s
1909	275	19	1
1910	500	34	2
1911	2,630	179	8
1912	1,457	99	4
1913	---	\cdots	∞
1914	-me	$\cdots \infty$	\cdots
1915	--0	---	\cdots
1916	- -	-0-	--m
1917	--s	-	-000
1918	\cdots	---	- $-\infty$
1919	- -	$\cdots \infty$	\cdots
1920	---	--	--0
1921	-	-80	---
1922	--0	---	--

YEAR
YEAR

8T•9- \quad x!puədd ψ
pounds (round) of chinook salmon lamded on the coos river, by month, 172.3-194.

year	JAM	FEB	march	APRIL	MAY	JUNE	JULY	AUG	SEPT	OCT	NOU	DEC	total
1923	---	---	---	---	---	---	---	85,058	174,365	6,533	843	---	266,799
1924	--	---	---	---	---	---	16,091	46,999	165,872	92,045	36,033	---	356,540
1925	25	---	---	---	---	177	10,847	103,711	113,613	56,992	6,330	423	292,118
1926	90	---	---	---	---	509	2,365	14,348	57,269	54,554	3,036	75	132,246
1927	1,037	---	---	---	---	68	2,670	13,408	52,642	24,581	5,710	68	100,184
1928	-	---	---	---	11,046	689	5,201	40,269	49,653	32,632	44,349	821	184,660
1929	18	---	---	---	59	330	705	6,981	37,017	21,807	642	1,114	68,673
1930	---	---	---	52	671	130	---	4,653	11,031	31.751	3.467	20	51,775
1931	---	---	---	---	116	---	1,341	6,843	8,561	56,287	29.091	50	102,289
1932	799	621	1,778	---	1,411	288	99.4	5,308	13,782	31,649	743	59	57,432
1933	---	---	10	---	2,447	156	2,640	2,714	4,708	5,786	1,761	---	20,222
1934	---	1,283	---	---	31	47	1,933	4,151	3,810	1,730	151	---	13,136
1935	---	---	1,689	---	1,444	1,259	1,246	6.349	10,038	1,815	213	55	24,10日
1936	---	---	1,862	---	32	16	198	3,987	16.362	8,898	301	---	31,65
1937	48	---	1.664	---	61	51	135	2,117	6,814	7.451	3,101		21,417
1938	---	--	1.038	8	180	169	150	5,184	10,853	4.988	1,424	52	24,096
1939	-	780	1,159	224	78	81	---	2,975	5,309	4,426	2,175	---	17,207
1940	---	12	---	29	23	---	160	107	815	1,109	132	---	2,387
1941	---	---	451	---	---	---	211	---	51	455	28	---	1,196
1942	---	---	---	---	---	---	---	---	331	3,759	132	---	4,222
1943	---	---	150	---	18	---	---	1,002	368	982	136	---	2,656
1944	---	---	150	---	---	---	---	---	-	--.	---	---	150
1945	28	---	---	51	---	---	---	25	---	20	---	---	124
1946	---	---	---	---	38	---	---	---	855	---	---	---	893

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINOOK SALMON LANDED ON THE COOS RIVER, 1923-1946.

YEAR	POUNDS	EST. NUMBER (THOUSANDS)
1923	266,799	12
1924	356,540	16
1925	292,118	13
1926	132,246	6
1927	100,184	4
1928	184,660	8
1929	68,673	3
1930	51.775	2
1931	102,289	5
1932	57.432	3
1933	20,222	1
1934	13,136	1
1935	24,108	1
1936	31,656	1
1937	21,447	1
1938	24,046	1
1939	17;207	1
1940	2,387	<1
1941	1,196	<1
1942	4,222	$\bigcirc 1$
1943	2,656	<1
1944	150	<1
1945	124	$\leqslant 1$
1946	893	<1

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON•COOS RIVER. 1923-1946.

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED NUMBERS OF CHINOOK SALMON PACKED ON THE COQUILLE RIUER, 1892-1922.

YEAR	CASES	EST. POUNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	-	-	---
1893	---	--*	--
1894	---	---	---
1895	760	52	2
1896	1,225	83	4
1897	---	---	--
1898	541	37	2
1899	950	65	3
1900	2,636	179	8
1901	133	9	(1)
1902	286	19	1
1903	331	23	1
1904	600	41	2
1905	2,100	143	6
1906	821	56	2
1907	306	21	1
1908	---	---	---
1909	250	17	1
1910	420	29	1
1911	715	49	2
1912	377	26	1
1913	---	-	--*
1914	---	---	-
1915	1,079	73	3
1916	869	59	3
1917	694	47	2
1918	1,318	90	4
1919	1,027	70	3
1920	541	37	2
1921	---	---	---
1922	--	--	--0

pounds (round) of chinook salmon lanied on the coluille river, by honth, 192.3-1956.

YEAR	JAM	FEB	MARCH	APRIL	MAY	JUME	JULY	AUG	SEPT	OCT	HOV	IEC	total
1923	\cdots	---	---	---	-	---	4,950	13,000	12,000	29,886	4,950	---	64,786
1924	---	->-	---	---	---	---	39,342	118,307	60,748	161,693	37,993	217	418,300
1925	83	191	308	---	---	1,010	20,587	20,602	73,274	39,264	4,835	5,151	165,305
1926	5,751	---	54	---	---	---	6,576	7.451	24,532	25,765	9,176	223	79,528
1927	251	, ---	---	---	---	---	4,597	6.691	14,449	23,298	933	4	50,227
1928	245	\%---	140	---	---	226	2,584	12,276	13,453	70,158	5,185	1,994	106,261
1929	590	- ---	---	---	---	---	---	3,308	17,638	9,630	8,517	---	39,683
1930	---		---	---	---	---	---	2,490	6,017	5,283	4, 031	--	17,821
1931	---		---	-	---	420	-	2,884	12,550	5,438	987	2,127	24,406
1932	1,930	11,868	---	---	---	250	2,629	,	10,444	10,665	2,549	-...-	30,3,55
1933	41	560	---	---	---	---	791	4,033	9,686	6,289	128	931	22,459
1934	200	$\cdots-$	---	---	---	143	225	1,629	11,658	12,197	2,709	137	28,898
1935	318.	$\%$---	---	---	48	134	1,559	4,030	24,861	9,099	2,073	63	42,185
1936	546	$\cdots=$	---	---	15	550	1,922	11,002	23,334	20,607	3,626	143	61,745
1937	354	$5-$	---	---	---	---	431	6,453	23.986	31,744	1,669	6	64,643
1938	400	-	---	---	39	43	1,138	8,584	36,868	21,071	2,767	496	71,406
1939	87.	--	---	---	68	472	729	4,786	17,965	20,186	5,841	576	50,708
1940	372		---	17	17	3,842	5,374	7,376	17,045	13,718	2,179	-	49,940
1941	221		---	---	49	2,383	4,329	8,829	16,302	15,112	3,040	228	50,493
1942	81.	---	\cdots	---	62	90	1,264	9,087	24,087	14,242	3,262	780	52,955
1943	295.	\%--	---	---	---	25	21	3,052	9,914	5,509	1,107	61	19,984
1944	165	¢---	---	---	18	20	85	1.910	8,400	8,265	1,198	---	18,061
1945	---	--	---	---	---	---	---	1,456	12,318	7,690	3,321	39	24,824
1946	---	-	---	---	---	7	---	348	8,424	4,726	16	92	13,613
1947	---		---	---	6	---	667	369	7,586	1.780	242	---	10,650
1948	---	2-	---	-	23	13	---	---	13,790	4.377	131	---	18,334
1949	---	+--	---	---	-	---	-	---	4,749	4,170	---	---	8,919
1950	$\rightarrow-$ -	\cdots	---	---	---	-	---	---	7,164	6,693	--	---	13,857
1951	--	\square	---	---	---	---	---	---	4,931	2,862	--	--.-	7,793
1952	\cdots	-	---	---	---	---	---	in	6,468	3,501	600	---	10,569
1953	-	1-	-	--	---	---	--	---	10,379	5,593	1,757	---	17,729

comtinued

year	JAN	FEB	MARCH	APRIL	may	June	Juty	AUG	SEPT	oct	NOV	HEC	total
1954	---	---	---	---	---	---	---	---	5,615	3,801	978	---	10,394
1955	---	---	---	---	---	---	---	---	3,897	4,938	1,031	---	9,866
1956	---	---	---	---	---	---	---	---	3,032	2,991	33	---	6,056

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINOOK SALMON LANDED ON THE COQUILLE RIUER, 1923-1956.

YEAR	POUNDS	EST. NUMBER (THOUSANDS)
1923	64,786	3
1924	418,300	19
1925	165,305	7
1926	79,528	4
1927	50,227	2
1928	106,261	5
1929	39,683	2
1930	17,821	1
1931	24,406	1
1932	30,335	1
1933	22,459	1
1934	28,898	1
1935	42,185	2
1936	61,745	3
1937	64,643	3
1938	71,406	3
1939	50,708	2
1940	49,940	2
1941	50,493	2
1942	52,955	2
1943	19,984	1
1944	18,061	1
1945	24,824	1
1946	13,613	1
1947	10,650	$\leqslant 1$
1948	18,334	1
1949	8,919	<1
1950	13,857	1
1951	7,793	$\bigcirc 1$
1952	10,569	<1
1953	17,729	1
1954	10,394	<1
1955	9,866	<1
1956	6,056	$\leqslant 1$

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE COQUILLE RNER, 1923-1956.

CASES, ESTINATED POUNDS (ROUND), AND ESTIMATED NUMBERS OF CHINDOK salmon packed on the nehalen river, 1892-1922.

yEAR	CASES	EST. POUNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	---	---	-
1893	1,692	115	5
1894	1,627	111	5
1895	1,752	119	5
1896	2,828	192	9
1897	3,384	230	10
1898	3,808	259	11
1899	1,384	94	4
1900	---	---	---
1901	288	18	1
1902	271	18	1
1903	686	47	2
1904	500	34	2
1905	2,700	184	8
1906	3,987	271	12
1907	4,000	272	12
1908	5,000	340	15
1909	1,985	135	6.
1910	3,500	238	11
1911	5,821	396	18
1912	---	---	---
1913	300	20	1
1914	4,841	329	15
1915	400	27	1
1916	2,700	184	8
1917	783	53	2
1918	1,685	115	5
1919	500	34	2
1920	0	0	0
1921	0	0	0
1922	0	0	0

THOUSANDS OF CASES

62•9-ヲ x!̣puədd ψ

POUMDS (ROUND) OF CHIMOOK SALMON LANDED ON THE NEHALEH RIVER, BY MOMTH, 1923-1956.

YEAR	JAN	FEB	March	APRIL	MAY	JUNE	July	fug	SEPT	OCT	NOV	Hec	total
1923	---	---	---	---	---	---	---	92,590	109,504	33,405	1,144	---	236,643
1924	-	-	---	---	---	---	-	109,630	112,128	29,477	878	35	252,148
1925	7	---	---	---	---	---	1,487	78,477	76,035	43,558	3,027	---	202,591
1926	---	---	---	---	---	---	,	65,505	53,189	23,494	3,116	28	145,332
1927	---	---	---	---	---	---	---	64,493	62,090	12,057	614	---	139,254
1928	---	---	---	---	---	---	---	60,243	52,957	24,245	2,990	---	140,435
1929	---	---	---	---	---	---	---	49,167	48,602	18,681	2,513	54	119,017
1930	---	100	---	---	---	---	---	51,521	39,809	26,966	597	---	98,993
1931	---	1,757	---	---	---	---	---	31,119	40,156	35,160	514	---	108,706
1932	---	1,593	---	---	---	---	---	50,254	54,708	29,484	5,950	---	141,989
1933	---	524	---	---	---	---	---	---	39,514	16,304	4.113	---	60,4.55
1934	---	1,150	---	---	---	---	----	53,916	39,395	18,890	320	---	113,671
1935	\cdots	369	---	---	---	---	11,114	24,898	39,176	18,350	627	--	94,534
1936	12	374	---	---	---	---	17,431	19,425	77,849	39,086	1,899	17	156,093
1937	---	101	---	---	---	---	10,54	27,899	51,848	65,526	1,509		157.427
1938	--	540	---	---	---	---	5,729	24,137	47,780	53,049	3,566	---	134,801
1939	---	385	---	---	---	---	5,239	11,236	32,746	52,989	2,574	86	105,235
1940	180	---	---	---	---	472	14,510	23,210	41,483	31.618	861	---	112,334
1941	---	\cdots	---	---	---	---	11,939	20,779	28,249	11,913	625	---	73,505
1942	---	148	---	---	---	---	226	7,975	35,704	29,223	1,521	---	74,697
1943	---	--	---	---	---	---	674	5,537	23,771	23,218	261	---	53,461
1944	---	1,513	---	---	---	---	164	2,582	28,544	23,083	1,235	---	57,121
1945	---	75	---	---	---	---	22	1,994	40,452	45,881	7,464	78	95,966
1946	---	948	---	---	--	---	196	2,383	27,567	29,862	1,591	--.	62,54,
1947.	---	---	---	---	---	---		3,919	26,544	23,693	1,092	---	55,248
1948	---	---	---	---	---	---	---	---	17,973	14,480	1,002	---	33,455
1949	-	--	---	---	---	---	---	---	11,605	6,909	832	---	19,346
1950	--	--	---	---	---	---	---	---	10,759	13,637	783	---	25,179
1951	---	--	---	---	---	---	---	---	18,133	5,500	114	---	23,747
1952	---	--	---	---	---	-	--	--n	14,251	2,714	975	---	17,940
1953	---	---	---	---	---	---	---	---	8,683	4,466	602	---	13,751

CONIINUED

year	Jan	fEb	march	APRIL	mar	June	JULY	aug	SEPI	ост	HOU	dec	total
1954	--.	---	---	---	---	---	---	---	16,125	3,488	636	---	20,249
1955	---	---	---	---	---	---	---	---	11,477	4,138	482	---	16,097
1956	---	---	---	---	---	---	---	---	7,539	1,933	137	---	9,609

POUNDS (ROUND) AND ESTIAATED NUMBER OF CHINOOK SALMON LANDED ON THE NEHALEA RIUER, 1923-1956.

YEAR	POUNDS	EST. NUMBER (THOUSANDS)
1923	236,643	10
1924	252,148	11
1925	202,591	9
1926	145,332	6
1927	139,254	6
1928	140,435	6
1929	119,017	5
1930	98,993	4
1931	108,706	5
1932	141,989:	6
1933	60,455	3
1934	113,671	5
1935	91,534	4
1936	156,093	7
1937	157,427	7
1938	134,801	6
1939	105,235	5
1940	112,334	5
1941	73,505	3
1942	74,697	3
1943	53,461	2
1944	57,121	3
1945	95,966	1
1946	62,547	3
1947	55,248	2
1948	33,455	1
1949	19,346	1
1950	25,179	1
1951	23,747	1
1952	17,940	1
1953	13,751	1
1954	20,249	1
1955	16,097	1
1956	9,609	<1

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE NEHALEM RIVER, 1923-1956.

CASES, ESTMMATED POUNDS (ROUND), AND ESTIMATED NUMBERS OF CHINOOK SALHON PACKED OH THE NESTUCCA RIVER, 1892-1922.

YEAR	CASES	EST. POUNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	\cdots	---	\cdots
1893	--.	--	--m
1894	-00	\cdots	--
1895	--0	$\cdots{ }^{-\infty}$	--0
1896	-om	\cdots	---
1897	-00	\cdots	\cdots
1898	--m	--	--
1899	1,109	75	3
1900	--s	--	--
1901	279	19	1
1902	\cdots	- $-\infty$	-am
1903	-m-	--*	--0
1904	---	-->	---
1905	3,000	204	8
1906	2,632.	178	8
1907	2,100	143	6
1908	3,000	136	6
1909	---	--	-
1910	2,000	136	6
1911	3,562	242	11
1912	3,090	210	9
1913	126	9	<1
1914	3.542	241	11
1915	200	14	1
1916	2,400	163	7
1917	2,000	136	6
1918	3,000	204	9
1919	1,900	129	6
1920	-m-	---	\cdots
1921	-	\cdots	\cdots
1922	--	--0	--

THOUSANDS OF CASES

POUNDS (ROUND) OF CHIMODK SALMON LANUED ON THE NESTUCCA RIUER, BY MONTH, 1923-1926.

YEAR	JAM	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEFT	OCT	NOU	IEC	TOTAL
1923	---	---	---	---	---	---	---	31,106	88,152	52,056	350	61	171,725
1924	---	---	---	---	---	---	---	52,892	118,581	88,499	2,438	299	262,709
1925	---	-	---	---	---	1,324	66,018	16,037	99,585	80,407	15,705	115	279,191
1926	-	-	---	---	---	,	29,422	11,930	43, 651	70,833	8,281	33	164,150

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINOOK SALMON LANDED ON THE NESTUCCA RIUER, 1923-1926.

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE NESTUCCA RIVER, 1923-1926.

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED NUMBERS OF CHIMOOK SALMON PACKED OH THE ROGUE RIUER, 1892-1922.

Year	CASES	EST. POUNDS (THOUSANDS)	EST. NUMDER (THOUSANDS)
1892	10,000	680	30
1893	3,200	218	10
1894	--0	---	--
1895	10,377	706	31
1896	15,000	1,020	45
1897	15,355	1,044	46
1898	12,964	882	39
1999	5,481	373	16
1900	\cdots	---	--m
1901	2,681	182	8
1902	3.799	258	11
1903	8,418	572	25
1904	16,000	1,088	18
1905	18,500	1,258	56
1906	12,000	816	36
1907	7,537	513	23
1908	4,354	296	13
1909	186	13	1
1910	232	16	1
1911	- -	---	--s
1912	--	--	-
1913	3.020	205	9
1914	6.938	472	21
1915	19,094	1,298	57
1916	22,640	1,540	68
1917	24,707	1,680	74
1918	20,469	1,392	62
1919	17,237	1,172	52
1920	10,205	694	31
1921	12,496	850	38
1922	10,568	719	32

pounds (round) of chindok salmor landed on the rogue river, by month, 1923-1935.

Year	JAN	FEB	March	APRIL	MAY	JUNE	JuLY	aUg	SEPT	OCT	Nov	UEC	total
1923	---	---	---	---	202,002	474,594	140,105	8,972	17,961	7,784	26,022	---	877,440
1924	---	---	---	---	94,447	161,472	108,596	528,086	191,680	---	2,862	---	1,087,143
1925	---	---	---	---	21,698	135,616	233,326	766,327	274,391	---	-	---	1,431,358
1926	---	---	---	---	42,684	143,423	245,330	436,897	226,982	---	---	465	1,095,781
1927	---	---	---	---	50,124	121,778	175,239	63,735	224,853	37	---	---	635,766
1928	---	---	---	---	90,964	39,522	30,585	43,351	56,201	---	---	---	260,623
1929	---	---	---	---	25,620	30,893	22,912	70,747	61,393	---	---	---	211,565
1930	---	---	---	---	15,486	26,400	28,294	70,781	53,138	---	---	---	194,099
1931	---	---	---	---	46,246	63,085	61,485	92,485	4,465	---	---	---	267,766
1932	---	---	---	---	88,005	162,766	130,674	132,337	14,602	---	---	----	528,384
1933	---	---	---	---	120,885	102,259	41,228	54,323	28,467	---	---	---	347,162
1934	---	---	---	---	53,458	54,763	20,907	24,276	20,602	---	---	---	174,006
1935	---	---	---	---	42,092	12,953	---	---	---	---	---	---	55,045

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINOOK SALMON LANDED ON THE ROGUE RIUER, 1923-1935.

YEAR	POUNDS	EST. NUMBER (THOUSANDS)
1923	877,440	39
1924	1,087,143	48
1925	1,431,358	63
1926	1,095,781	48
1927	635,766	28
1928	260,623	12
1929	211,565	9
1930	194,099	9
1931	267,766	12
1932	528,384	23
1933	347,162	15
1934	174,006	8
1935	55,045	2

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE ROGUE RNER, 1923-1935.
pOUNDG (round) of chindok salmon landed on the salmon river, by honth, 1923-1946.

year	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	aUg	SEPT	OCT	NOV	IIEC	total
1923	---	---	---	---	---	---	---	1,575	---	208	---	---	1,783
1924	--	---	-	---	---	---	---	---	---	395	---	--	395
1925	---	---	-	---	---	---	---	---	5,591	7,277	556	---	13.424
1926	---	---	---	---	---	---	---	628	2,544	1.911	909	---	5,992
1927	---	---	---	---	---	---	---	---	552	1,695	25	---	2,272
1928	---	--	---	---	---	---	---	---	2,232	2,499	901	---	5,632
1929	---	--	---	---	---	---	---	---	---	2,871	545	---	3,416
1930	---	--	---	---	---	---	---	---	---	---	---	---	---
1931	---	--	---	---	--	---	---	---	--	--	---	---	---
1932	---	---	---	---	---	--	---	---	---	--	---	---	---
1933	---	---	---	---	---	---	---	---	1,195	---	164	---	1,359
1934	--	--	---	---	---	---	---	---	2,162	1,176	---	---	3,358
1935	--	---	---	---	---	---	148	272	1,306	---	---	---	1,726
1936	---	,	---	---	---	---	---	---	---	---	985	---	985
1937	$-$	---	---	---	---	---	---	---	---	---	-	---	1,326
1938	---	---	---	---	---	---	---	---	---	---	---	---	4,388
1939	---	---	---	---	---	---	---	---	---	---	---	---	3,725
1940	--	--	---	---	---	---	---	---	---	---	---	---	9,548
1941	---	---	---	---	---	---	---	-	---	---	---	---	11,936
1942	---	---	---	-	---	---	---	---	---	---	---	---	16,014
1943	---	-r-	---	---	---	---	---	---	---	---	---	---	8,010
1944	---	---	---	---	---	---	---	---	---	---	---	---	4,198
1945	-	---	---	---	---	---	---	---	---	---	---	---	2,596
1946	---	---	---	---	---	---	-	---	---	---	-	-	5,713

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINOOK SALPON LANDED ON THE SALKON RIUER, 1923-1946.

YEAR	founds	EST. NUABER (THOUSANDS)
1923	1,783	<1
1924	395	<1
1925	13,424	1
1926	5,992	\checkmark
1927	2,272	$\leqslant 1$
1928	5,632	¢
1929	3,416	<1
1930	---	---
1931	---	---
1932	---	--*
1933	1,359	$\checkmark 1$
1934	3,338	<1
1935	1,726	<1
1936	985	≤ 1
1937	1,326	<1
1938	4,388	<1
1939	3,725	$\leqslant 1$
1940	9,548	<1
1941	11,936	1
1942	16,014	1
1943	8,010	<
1944	4,198	-1
1945	2,596	\bigcirc
1946	5,713	<1

THOUSANDS OF POUNDS

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED NUMBERS OF CHINOOK SALMON PACKED ON THE SILETZ RIUER, 1892-1922.

YEAR	CASES	EST. POUNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	---	--0	--
1893	---	--	--0
1894	---	--	--
1895	---	-	-->
1896	2,500	170	8
1897	3,510	239	11
1898	3,200	218	10
1899	2,200	150	7
1900	---	---	--0
1901	876	60	3
1902	600	41	2
1903	---	---	-m
1904	1,000	68	3
1905	1,500	102	5
1906	2,635	179	8
1907	2,333	159	7
1908	2,100	143	6
1909	- \times -	---	-
1910	2,200	150	7
1911	3,584	244	11
1912	3,277	223	10
1913	15	1	81
1914	3,356	228	10
1915	100	7	<1
1916	1,000	68	3
1917	1,800	122	5
1918	4,304	293	13
1919	1,393	95	4
1920	2,002	136	6
1921	3,136	213	9
1922	1,702	116	5

THOUSANDS OF CASES

$87^{\circ} 9-\forall$ xṭpuədd ψ

POUND (ROUND) OF CHINOOK SALMON LANDED ON THE SILETZ RIVER, GY MONTH, 1923-1956.

YEAR	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	aug	SEPT	OCT	NOV	UEC	tutal
1923	---	---	---	---	---	---	29,683	91.792	80,549	25,659	1.091	---	228,774
1924	---	---	---	---	---	---	27,079	79,671	97,339	50,292	636	---	255,017
1925	43	---	---	---	---	---	20,074	36,589	98,291	55,202	22,680	137	233,016
1926	---	---	830	---	---	---	2,948	20,296	44,364	30,102	5,157	---	103,697
1927	38	---	---	---	---	---	4,035	32,0,7	35,573	14,418	1,664	---	87,805
1928	---	---	--	---	---	---	7,088	24,571	30,624	19,481	1,062	---	82,826
1929	---	81	45	---	---	---	9,884	17,938	52,896	22,271	1,928	37	105,080
1930	---	---	---	---	---	---	4,744	12,037	37,340	23,787	177	---	78,085
1931	---	---	---	---	---	---	2,266	8,492	31,927	13,049	---	580	56,314
1932	---	442	5,930	---	---	---	8,776	26,285	29,865	15,712	124	56	87,190
1933	---	---	2,837	---	---	---	15,957	26,403	18,482	11,158	78	29	74,944
1934	---	---	5,429	---	---	---	19,791	16,355	16,497	9,464	74	----	67,610
1935	---	396	128	---	---	---	1,848	7,055	11,234	4,566	447	---	25,774
1936	---	40	62	---	---	---	2,417	6,903	14,762	11,063	2,449	572	38,268
1937	---	--	295	---	---	---	2,436	12,043	17,391	27,748	58.	---	62,497
1938	---	870	76	---	---	---	1,574	7,284	22,785	12,198	1,407	---	46,194
1939	100	564	394	---	---	---	2,348	3,906	12,150	8,896	1,176	---	29,534
1940	--	482	225	---	---	---	2,577	8,167	14,847	9,806	614	121	36,839
1941	---	78	-	---	---	---	2,055	9,055	7,971	7,513	537	---	27,209
1942	---	572	---	---	---	---	166	5,826	17,240	13,483	1,619	---	38,906
1943	---	603	200	---	---	---	---	1,652	6,271	5,015	1,104	---	14,845
1944	---	2,074	518	---	---	---	---	401	88884	8,941	238	---	21,056
1945	---	1,156	---	---	---	---	---	---	14,049	10,896	1,199	---	27,300
1946	---	231	673	---	---	---	63	2,189	11,072	7,104	198	---	21,530
1947	---	---	---	---	---	---	---	389	11,470	6,361	2,035	---	20,255
1948	---	---	---	---	---	---	---	815	14,079	8,794	502	---	24,190
1949	---	---	---	---	---	---	---	850	19,219	11,170	25	---	31,264
1950	---	---	---	---	---	---	---	1,155	15,910	6,248		---	23.313
1951	---	---	---	---	---	---	---	2,163	13,518	3,341	---	---	19,022
1952	--r	---	---	---	---	---	-ヵ-	5,942	31,133	13,413	---	---	50,493
1953	---	---	---	---	---	---	---	9,497	25,746	20,480	---	---	55,723

CONTINUED

YEAR	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEF'T	OCT	HOV	DEC	total
1954	---	$\cdots \infty$	---	---	---	---	---	8,057	24,562	12,907	---	-..--	45,526
1955	---	---	---	---	---	---	---	6,062	28,610	10,926	---	---	45,598
1956	---	---	---	---	---	---	---	5,063	8,171	2,639	---	---	15,873

pounds (round) and estimated number of chinook salmon landed on the SILETZ RIUER, 1923-1956.

YEAR	POUNDS	EST. NUMBER (THOUSANDS)
1923	228,774	10
1924	255,017	11
1925	233,016	10
1926	103,697	5
1927	87,805	4
1928	82,826	4
1929	105,080	5
1930	78,085	3
1931	56,314	2
1932	87,190	4
1933	74,944	3
1934	67,610	3
1935	25,774	1
1936	38,268	2
1937	62,497	3
1938	46,194	2
1939	29,534	1
1940	36.839	2
1941	27,209	1
1942	38,906	2
1943	14,845	1
1944	21,056	1
1945	27,300	1
1946	21,530	,
1947	20,255	1
1948	24,190	1
1949	31,264	1
1950	23,313	1
1951	19,022	1
1952	50,493	2
1953	55,723	2
1954	45,526	2
1955	45,598	2
1956	15,873	1

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE SILETZ RIVER, 1923-1956.

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED NUMBERS OF CHINOOK SALMON PACKED ON THE SIUSLAG RIUER, 1892-1922.

YEAR	CASES	EST. POUNDS (THOUSAMDS)	EST. NUMBER (THOUSAMDS)
1892	-	-mo	-
1893	1,471	100	4
1894	1,871	127	6
1895	1.637	111	5
1896	2,700	184	8
1897	1,100	75	3
1898	850	58	3
1899	1,162	79	3
1900	-00	--0	- $-\infty$
1901	1,735	118	5
1902	1,288	88	4
1903	1,519	103	5
1904	500	34	2
1905	--	- $-\infty$	-mo
1906	4,500	306	14
1907	--m	--0	--0
19.08	--a	- -	\cdots
1909	632	43	2
1910	856	58	3
1911	1,120	76	3
1912	- -	\cdots	\cdots
1913	--s	-m	\cdots
1914	-00	---	--m
1915	-m-	--0	--*
1916	875	60	3
1917	--s	- $-\infty$	\cdots
1918	-0	--*	\cdots
1919	--m	- -	∞
1920	---	--0	
1921	--*	--	--m
1922	---	---	∞

Appendix A-6. 54

CASES OF CHINOOK SALMON CANNED ON THE SIUSLAW RIVER, 1892-1922.

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE SIUSLAH RIUER, BY MONTH, 1923-1956.

YEAR	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	IEC	tatal
1923	--	--	---	-	2,484	13,004	9,542	18,430	36,688	10,047	8,230	-	98,405
1924	---	---	---	---	2,994	11,631	28,151	24,507	58,227	15,801	20,441	--	161,752
1925	-	902	---	---	1,338	3,976	5,757	9.856	47,804	27,841	2,264	-	99,3,38
1926	---	---	---	---	196	3,871	1,897	10,084	30,563	25,666	970	49	73,296
1927	---	---	---	---	273	1,622	4,359	12,865	27,902	20,547	427	---	67,995
1928	-	-	---	---	---	390	2,286	6.936	13,665	38,202	789	---	62,268
1929	---	1,046	---	---	---	4.43	---	1,281	39,566	26,716	468	---	69,520
1930	---	34	---	-	--	652	---	5.982	7.925	26,637	373	---	41,603
1931	83	---	---	--	--	---	---	7,142	8,285	20,070	214	---	35,794
1932	-	---	837	---	156	5,698	4,232	5,738	24,978	10,086	116	--	51,841
1933	-	---	890	---	1.00	---	33,125	-	32,883	23,405	2.54	6	90,673
1934	---	---	---	---	20	2,485	14,617	5,262	7,216	390	23	2,629	32,642
1935	-	--	---	---	---	1,202	9,478	10,494	17,227	8,704	309	585	47.999
1936	---	---	---	---	---	262	6,559	6,329	15,300	16.368	312	455	45,585
1937	---	---	---	---	445	--	5,461	14,445	17,698	30,409	1.789	---	70,247
1938	---	---	---	---	20	351	3,841	17,356	31,926	13,241	2,350	53	69.138
1939	---	---	---	---	27	381	1,962	6,287	28,214	21,522	2,098	-	60.491
1940	-	---	---	---	81	294	7,471	15,624	16,751	8,858	323	---	49,382
1941	-	---	---	---	76	1.761	8,868	14,304	11,773	9,645	1,063	---	47,490
1942	-	---	---	-	---	105	1.784	8.793	16,857	11,916	2,773	---	42.228
1943	---	-	---	---	---	62	412	3,217	10,406	5,526	1,034	---	20,657
1944	---	--	---	---	---	---	426	2,484	6.131	3,539	191	---	12,771
1945	-	--	-	---	---	191	169	1,433	7.532	4,510	1,040	---	14,875
1946	---	---	---	---	22	---	---	406	4,060	3,109	470	---	8,067
1947	---	---	---	---	12	19	---	392	7.437	4,393	206	---	12,459
1948	---	---	---	---	32	---	---	---	12,436	6,820	100	---	19,388
1949	-	-	---	---	25	---	---	---	5,092	2,651	25	---	7.793
1950	---	-	---	---	-	---	---	--	8,284	4,532	124	---	12,940
1951	---	-	---	---	---	---	---	-	6,099	2,045	---	-	8,144
1952	---	-	---	---	---	---	---	-	8,274	2,275	101	---	10,650
1953	---	---	---	--	---	---	---	---	10,346	11,369	1,078	--	22,793

continued

year	Jan	FEB	MARCH	APRIL	MAY	June	JULY	AUG	SEPT	OCT	NOV	DEC	total
1954	---	---	---	---	---	---	---	---	13,440	2,974	2,021	---	18,435
1955	---	---	---	---	---	---	---	---	11,482	2,520	1,121	---	15,123
1956	---	---	---	---	---	---	---	---	5,124	799	283	---	6,206

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINODK SALMON LANDED ON THE SIUSLAH RIVER, 1923-1956.

YEAR	POUNDS	EST. NUMBER (THOUSANDS)
1923	98,405	4
1924	161,752	7
1925	99,338	
1926	73,296	3
1927	67,995	3
1928	62,268	3
1929	69,520	3
1930	41,603	2
1931	35,794	2
1932	51,841	2
1933	90,673	4
1934	32,642	1
1935	47,999	2
1936	45,585	2
1937	70,247	3
1938	69,138	3
1939	60,491	3
1940	49,382	2
1941	47,490	2
1942	42,228	2
1943	20,657	1
1944	12,771	1
1945	14,875	1
1946	8,067	<1
1947	12,459	1
1948	19,388	1
1949	7,793	$\bigcirc 1$
1950	12,940	1
1951	8,144	$\leqslant 1$
1952	10,650	<1
1953	22,793	1
1954	18,435	1
1955	15,123	1
1956	6,206	<

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE SIUSLAW RIVER, 1923-1956.

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED AUMBERS OF CHINOOK SALMON PACKED ON TILLAMOOK BAY, 1892-1922.

YEAR	CASES	EST. POUNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	---	---	-
1893	497	34	1
1894	700	48	2
1895	---	---	---
1896	2,200	150	7
1897	2,000	136	6
1898	5,000	340	15
1899	2,180	148	7
1900	--0	- -	\cdots
1901	848	58	3
1902	215	15	1
1903	- $=$	---	\cdots
1904	---	---	-
1905	1,100	75	3
1906	1,870	127	6
1907	2,000	136	6
1908	2,300	156	7
1909	2,615	178	8
1910	2,900	197	9
1911	8,433	573	25
1912	3,811	259	11
1913	2,600	177	8
1914	4,734	322	14
1915	5,675	386	17
1916	9,465	644	28
1917	8,822	600	27
1918	107	7	<1
1919	1,500	102	5
1920	---	--s	---
1921	---	---	--
1922	---	---	-

THOUSANDS OF CASES

pounds (roumd of chinook salmon lanied on tillamook bay, by month, 1923-1961.

year	Jan	feb	MARCH	APRIL	MAY	June	JuLy	aug	SEPT	OCT	HOV	IEC	rotal
1923	---	---	---	---	---	30,886	61,747	58,725	171,005	134,365	20,853	230	477,811
1924	63					64,663	118,006	105,348	219,964	174,379	11,789	515	694,727
1925	59		3,294			69,577	40,362	42,722	217,231	240,626	23,417	1,226	638,464
1926	35					36,730	36,271	21,260	134,037	155.280	27,396	1,012	412,021
1927	98	86			5,730	52,669	46,743	33,618	99,231	111,504	12,975	331	362,985
1928	28	---	---	---	12,310	54,958	43, 357	24,650	50,518	102,297	14,575	526	303,219
1929	492	454			57,365	95,889	36,243	18,122	71,926	46,462	13,223	1,016	341,192
1930		19			82,866	93,750	26,615	8,937	71,901	79,798	7,293	323	371,502
1931	1,130	1,084			13,653	28,740	12,659	8,543	151,596	149,444	14,049	1,558	377,456
1932	4,247				27,309	45,683	28,108	16,648	113,750	140,061	12,563	844	389,213
1933		1,247	---	---	25,927	79,355	88,174	30,284	42,227	65,790	6,597	144	339,745
1934	3,398				20,869	86,160	49,597	30,207	43,696	56,145	3,818	141	294,031
1935	2,177	---		---	24,798	60,935	48,828	23,286	65,013	69,907	10,349	358	305,651
1936	24	2,219			15,896	31,221	16,398	15,403	50,627	158,670	10,570	750	301,788
1937		230	---		8,017	24,544	12,678	14,445	105,962	161,532	7,133	330	334,871
1938	32	331			2,809	27,486	14,315	12,800	83,471	138,130	18,699	611	298,684
1939	116	505	---	---	26,218	52,451	22,769	9,869	95,086	169,686	30,742	919	398,361
1940	60	1,400			30,036	42,587	25,315	18,315	117,156	137,196	9,977	424	382,466
1941	148	1,178			28,922	38,460	18,508	16,357	125,727	108,003	12,527	164	349,994
1942	277	224			10,879	15,488	5,131	8,709	20,555	185,763	18,381	653	266,060
1943	23	2,342			15,637	16,711	3,357	3.050	91,938	201,954	17,700	2,648	354,860
1944	--	1,107			11,963	9,240	6,665	4,590	97,188	171,172	19,154	1,401	322,480
1945	34	1,106			5,208	3,242	4,002	7,312	109,712	222,160	26,781	1,146	380,703
1946	5,072	158	---	---	2,999	2,085	2,243	4,393	69,490	202,605	32,506	1,682	323,233
1947.	---	---			2,769	1,668	671	1,197	67,623	120,852	18,286	1,136	214,202
1948	---	---						2,838	55,168	92,748	24,172	1,065	175,991
1949	---	---	---	---	---	---	---	3,175	46,983	124,804	23,971	756	199,689
1950	---	---						70	14,204	39,939	25,691	4,886	84,789
1951	---	---			---	---	---	20	15,479	90,865	31,446	3,476	141,286
1952		---			---		---	457	10,943	111,060	67,265	3,491	193,216
1953								137	10,572	38,052	23,867	758	73,386

continued

y Ear	JAN	FEB	march	APRIL	may	June	JuLY	aug	SEPT	OCT	nov	nec	total
1954	---	---	---	---	---	---	---	6,581	42,327	81,288	17,307	1,544	149,047
1955	---	---	---	---	---	---	---	3,929	35,505	69,336	15,708	1,434	125,912
1956	---	---	---	---	---	---	---	3,821	42,078	41,561	11,332	1,679	100,471
1957	---	---	---	---	---	---	---	---	----	---	13,021	-	13,021
1958	---	---	---	---	---	---	---	---	---	---	29,003	---	29,003
1959	---	---	---	---	---	---	---	---	---	---	28,542	---	28,542
1960	---	---	---	---	---	---	---	---	---	---	16,940	---	16,940
1961	---	---	---	---	---	---	---	---	---	---	9,814	---	9,814

POUNDS (ROUND) AND ESTIHATED NUMBER OF CHINOOK SALMON LANDED ON TILLAMOOK BAY, 1923-1961.

YEAR	POUNDS	EST. NUMBER (Thousands)
1923	477,811	21
1924	694,727	31
1925	638,464	28
1926	412,021	18
1927	362,985	16
1928	303,219	13
1929	341,192	15
1930	371,502	16
1931	377,456	17
1932	389,213	17
1933	339,745	15
1934	294,031	13
1935	305,651	14
1936	301,788	13
1937	334,871	15
1938	298,684	13
1939	398, 361	18
1940	382,466	17
1941	349,994	15
1942	266,060	12
1943	354,860	16
1944	322,480	14
1945	380,703	17
1946	323,233	14
1947	214,202	9
1948	175,991	8
1949	199,689	9
1950	84,789	4
1951	141,286	6
1952	193,216	9
1953	73,386	3
1954	149,047	7
1955	125,912	6
1956	100,471	4
1957	13,021	1
1958	29,003	1
1959	28,542	1
1960	16,940	1
1961	9,814	$\bigcirc 1$

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON TILLAMOOK BAY. 1923-1961.

CASES, ESTIMATED POUNDS (ROUND), AND ESTIHATED NUMBERS OF CHINOUK SALMON PACKED ON THE UMPQUA RIUER, 1892-1922.

YEAR	CASES	EST: POUNDS (THOUSANDS)	EST. MUMBER (THOUSANDS)
1892	-00	-	\cdots
1893	809	55	2
1894	235	16	1
1895	992	67	3
1896	1,300	88	4
1897	---	--0	-
1898	-m-	---	---
1899	925	63	3
1900	---	---	-
1901	- - -	---	--m
1902	---	---	---
1903	23	2	<1
1904	500	34	2
1905	6,100	415	18
1906	1,143	78	3
1907	\cdots	---	---
1908	---	--m	--s
1909	300	34	2
1910	2,000	136	6
1911	300	20	1
1912	30	2	<1
1913	---	- -	\cdots
1914	$1 ; 000$	68	3
1915	---	-	-
1916	\cdots	--0	-
1917	--*	--0	--
1918	1,703	116	5
1919	- - -	-	---
1920	- -	--0	-
1921	---	--	--m
1922	---	--m	---

thousands of cases

pounds (round) of chimook salmon landel on the umplua river, hy honth, 1923-1947.

YEAR	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT	DCT	nov	IEC	total
1923	-	---	---	---	---	---	---	---	---	---	----	----	281,615
1924	---	---	---	---	---	---	---	---	---	---	---	---	421,589
1925	---	---	11,436	35,260	26,911	13,110	7,138	52,378	193,262	50,241	1,495	854	392,085
1926	---	921	17,864	36,659	22,395	27,486	23,788	38,488	99,957	55,921	3,879	94	327,452
1927	---	562	6,286	16,536	15,275	31,576	28,739	44,889	86,364	26,983	2,196	11	259,417
1928	---	---	研	26,800	14,716	21,309	16.186	32,374	91,900	34,368	4,386	---	242,039
1929	---	---	10,374	18,915	11,269	3,640	4,091	13,226	34,911	20,057	318	---	116,801
1930	---	---	-	13,724	13.937	6,708	2,107	15,447	52,238	20,018	991	34	125,204
1931	---	---	---	4.527	10,817	6,473	9,556	28,105	60,341	3.234	1,393	1,677	126,123
1932	---	---	---	20,831	50,333	29,026	29,157	43,018	55,892	47.370	337	,	275,964
1933	---	---	-	13,415	32,652	28,768	18,501	4,219	40,419	18,815	283	5,107	162,179
1934	---	---	-	268	13,057	17,340	13,674	35,497	47,191	12,940	582	323	140,872
1935	-.-	-..-	---	10,345	7,137	4,762	4,056	24,075	45,839	13,653	322	362	110.551
1936	---	---	-	14,569	22,535	6,922	12,564	54,580	168,830	61,699	4,943	----	346,642
1937	---	---	---	30,540	26,526	31,672	22,185	45,213	85,914	55,599	2,352	---	300,001
1938	---	--	---	10,963	1,951	13,546	13,451	49,769	78,821	27,585	2,727	---	198,813
1939	---	---	-	8,772	6,176	11,093	10,842	21,923	39,036	33,166	2,262	---	133,270
1940	---	---	-	4,183	10,680	20,682	21.665	33,077	32,776	11,879	743	----	135,685
1941	-	---	---	7,024	19,787	8,193	10,267	24,866	30,073	15,827	592	---	116,829
1942	---	---	-	7.229	25,399	9,881	1,587	10,255	41,843	16,275	1,268	---	113,737
1943	-	---	-	4,756	4,502	2,925	284	1.847	8,220	3,914	388	---	26,836
1944	-	-	---	5,271	1,239	249	189	318	3,744	2,661	207	-	13,878
1945	---	---	---	85	748	116	70	376	14,764	3,895	367	---	20,421
1946	---	---	---	788	1,135	241	956	635	1.609	2,537	334	---	8,235
1947	---	---	---	---	316	249	---	---	188	625	106	---	1.484

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINOOK SALMON LANDED ON THE UAFQUA RIVER, 1923-1947.

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE UMPQUA RIVER, 1923-1947.

CASES, ESTIMATED POUNDS (ROUND), AND ESTIMATED NUHBERS OF CHINOOK
SALMOM PACKED ON THE YAQUINA RIUER, 1892-1922.

YEAR	CASES	EST. POUNDS (THOUSANDS)	EST. NUMBER (THOUSANDS)
1892	--	- - -	-
1893	---	--	--
1894	--0	--	\cdots
1895	---	---	-
1896	1,714	117	5
1897	---	---	---
1898	170	12	1
1899	316	21	1
1900	--0	\cdots	---
1901	96	7	<1
1902	--0	-0-	-
1903	---	--*	---
1904	50	3	<1
1905	200	14	1
1906	500	34	2
1907	834	57	3
1908	-	---	--0
1909	---	---	\cdots
1910	---	---	\cdots
1911	--0	-	-
1912	\cdots	- -	---
1913	---	---	--*
1914	-	- $=0$	\cdots
1915	---	\cdots	---
1916	---	--s	---
1917	-0.	--s	--s
1918	---	--*	\cdots
1919	\cdots	--	--
1920	-	-	--0
1921	---	--*	\cdots
1922	---	-*	---

CASES OF CHINOOK SALMON CANNED ON THE YAQUINA RIVER, 1892-1922.

POUNDS (ROUND) OF CHINOOK SALMON LANDED ON THE YAQUIHA RIUER, EY MONTH, 1923-1956.

YEAR	JAN	FEB	MARCH	AFRIL	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	WEC	total
1923	---	---	--	--	--*	--	\cdots	825	125,531	23,981	1,486	54	151,887
1924	---	---	---	---	---	---	---	2,808	62,804	5,332	-	41	70,985
1925	---	---	---	---	---	---	---		16,293	3,890	---	----	20.183
1926	---	---	---	---	---	86	---	55	13,551	12,932	61	---	26,685
1927	---	---	---	---	---	---	---	2,546	15,491	5,861	60	---	23,958
1928	---	---	---	---	---	---	115	13,967	23,636	6,968	120	17	44,823
1929	---	---	---	---	---	---	---	5,023	33,564	6,796	14.	---	45,530
1930	---	---	---	---	9	---	---	5,174	22,854	5,045	50	13	33,145
1931	---	---	---	---	-..-	---	1,617	11,433	52,923	19,257	181	---	85,411
1932	---	1,310	462	---	---	---	791	42,547	75,608	3,291	---	---	124,009
1933	--	1,416	---	---	---	323	1,745	1,538	26,993	3,200	217	350	35,782
1934	---	---	---	---	---	---	---	3,101	13,578	1,972	16	---	18,667
1935	---	714	658	---	---	---	339	159	22,539	3,179	227	---	27,815
1936	--	767	129	---	---	---	258	7,821	83,528	22,897	841	----	116,241
1937	---	50	221	---	---	---	---	4,410	40,033	28,716	211	----	73,641
1938	---	---	---	---	---	---	---	3,417	52,981	22,110	2,443	---	80,951
1939	---	---	---	---	---	---	---	2,912	36,961	16,235	1,446	---	57,554
1940	---	---	---	---	---	---	---	6,012	33,053	10,798	1,141	----	51,004
1941	--	---	---	---	---	---	350	21,517	31,478	17,370	635	---	71,358
1942	---	---	---	---	---	-	---	2,915	33,296	22,202	954	---	59,367
1943	---	---	---	27	---	36	---	3,14,	18,150	7,869	1,696	---	30,925
1944	---	---	---	---	---	308	---	1,208	9,225	3,636	401	---	14.778
1945	---	---	---	---	---	---	---	---	17,372	12,261	456	---	30,089
1946	---	---	---	---	---	---	---	1,407	9,906	9,677	1,871	---	22,861
1947	---	---	---	---	---	---	---	2,715	21,935	26,172	1,096	---	51,918
1948	--	---	-	---	-	---	---	---	22,189	14,587	930	---	37,706
1949	---	---	---	---	---	---	---	---	15,523	15,875	1,585	---	32,983
1950	---	---	---	---	---	---	---	---	14,635	15,572	958	---	31,155
1951	---	---	-	---	---	-	---	---	7,971	3,554	---	---	11,525
1952	---	---	---	---	---	---	---	---	7,139	3,237	992	----	11,368
1953	---	--	---	---	---	---	---	---	14,976	9,273	710	--	24,959

CONTINUED

YEAR	JAN	FEB	MARCH	APRIL	Hiny	JUME	JUL.Y	AUG	SEFT	OCT	NOY	[1EC	tutal
1954	---	---	---	---	---	---	---	---	16,259	7,243	3,215	---	26,717
1955	---	---	---	---	---	---	---	---	7,356	3.496	1,367	---	12,219
1956	---	---	---	---	---	---	---	---	3,209	1,357	172	---	4,738

POUNDS (ROUND) AND ESTIMATED NUMBER OF CHINOOK SALMON LANDED ON THE YAQUINA RIVER, 1923-1956.

THOUSANDS OF POUNDS

mprendix $A \cdot 7$			
EST MAIED HATCHEFY FELEASES OF EHINOOF： FFOM COASTAL STMEAM，FOF 1985 aND 1936			
SL5Em	Hatwhery \qquad Nぁme \qquad	FE］ 1	－Surimg
HIEmer Fiver	Fan 1.1 Creme	20，000	
Eurnt：Hi．J．Greet：	のた Fawific		100，000
巨oom Exy	Amedramous n Inc．	700.0001	1,60000
Woquille Fiver．	Eandon	0	
Eik Fiver	E1t：Fi yerr	725,000	
Mehadem Fiver	Nehadem		6,000
Nestumba Miver	Cedar Creek	\％4，600	68,600
Fogue river	Cole Riverme	10 mog	1，192，000
Sal mon Firer	Earmom Fiver	210，000	
Gujete Fiver	Sidetz	0	o
Giusten wiver	DOFEEA	＂mothimg plammed＂	＂ 0
Iraskt Rjver	Trases	उ－9，000	
Umpqua Fiver	Foct：Creet：	315,00	
Yaquine Bay	Oreatua	500.000	400,00
Aclapted fromb Fn Wealen dratt，IGex，			

mperatis $\begin{gathered}\text { ab }\end{gathered}$		
Hetrherx	gtome	
A）Stect	Trame	furumbulesis，greytal， aill amosba
Eandon	Lobsster	Triconoplirya
Cedmr inters	Nestucted	Beib，Hyamme doze tondeity，Wo， mudcy water stress
Gole Fiverz	Fogue Fix wer	amoeban columactis（adults have Everything，fuveni fec are diemeate free）
EJリ：River	Fits and Cmetuo	Git amoeba，Enterit ree mouth， J．chtryoptrtinusus，mycoinctut ja furumautosts，wostady fumgus， sumburns greytait．WWD
Fall Oreek	Fell Creek	\cdots
Warth Netratem	1ramt：	Furuncubosis，qul mimata： geyterl，costax，furqu\％ mouth，pocir water quatiby， curnetomyan
Fowt Lixemt	Wimpguex	greytaid，furnucudosis， ichtryophthivius，erteriw red gjal atropout：
Selmor river	Sendmon River	Furnuculasisa，CWO，cometian， gitl amoebay ichthyophtivirius，Fungus， $\mathrm{BGO}_{\text {y }}$ enterem．e．reed moutt． trichoodime eye lessons
Tr゙ast：Hivert	Trasal Firver	Furumcudosi＝s，coscie，gill． amoetan．columnatis．EfD， greytaja，jonthyophthiruus， CWD，tr＂ictocodman， Hamdlimg stress，weratumyas
fram：bary fman Rewortw，	r＂s．momm．ama GQen for uy 197	on dater from three fistr Dasemse 19日1．

```
            NA072F+y*A
```

74875959

ETq4atensne

040%
100n149 but +de
Momaryorred $7 \pi a+1760+17790$

7nos mogntay bymumage

Appendix B Index

```
mppemdix E. mnteractions of hatchery and native
```



```
    B-1. Goasta| mtremme bhat are bedieved to hove
        indigemous =towts with no difect hmtwhery
        trangplantes in recent yearma
    B-cu OLFW Summary of stombjmg pojjuy for
        Oregon Coastad btremme.
```



```
        avaibatule (to 19G%).
    B-4. Hatwherses or, the Lolumbin Fivem amol
        @regon cometed fishimg porte.
```


		400utu- burdes =- "e"m			
		400urdo 1		$1 \mathrm{ta}+=$	" - "40
	" 4 "4?				
	" A 40	(大eg		AeATy	47 Tuc
	" 4×4			A-ATH	\% 5
	"-1 " 40		amato it		
	" 1 "49				
-5.43					
" "4" $^{\text {a }}$	- " +10				
	" ${ }^{\text {"40 }}$		(Embors) da	anty =touttit	
	$\cdots \times 4$			4.ara angunt	
	*) 97			96\%	$7+r a 0$
" 54	$\begin{array}{r} 4 \times 40 \\ \times y=110 \end{array}$		$40+4 \pi 96$.decty ETTTMDOM		
	* - "47		4 yay (19\%		
	$\times 3 \times 10$			9atay	FACEAm
	564				

"x-a \quad rppuaddy

Mperojo \boldsymbol{F}

(IFEGON GOASTAL GTREAN

wummbed （ 2 ent	＂ 7 ＂43	
Пum＊Embory		
（－4\％）\＃1，mrome	＂9＊！	
日65 +4	＂ 7×17	
（＂ata）14tt		
＋7\％©－7ay	＂ $\mathrm{t}^{\prime \prime}$	
Embdun	＂ 347	
entuchur	－ $7 \cdot 110$	
motorum	＂．．1＂ 41	6utsmots aut
mondmay	＊$\times 14$	
Wromat		
956－11	＂ 640 ；＂ 4 － 4	
9 \％－． 1.	＂6＂47 品才＂47	
9 5 E－d．		
抿包－d！		
4Et－11	＊－ 0 ＂ 4	
	＂f＂40	Gut
917	＂．］＂49	
	＊\％＂ 47	
		Guty
	＂．．1＂ 4	
	＂$-1 \cdot 4 \%$	
		7．
W01\％ 5	＂9＊19 \％－\％＂15	
ancmo	$\cdots{ }^{*} 4$	
あnto	＊ $51 / 0$	6utamons mutaro．t
$\cdots \mathrm{ar}$ \％dede	＂f＂l｜＂］	
	$" 6 \cdot 4750 \cdots 715$	Futy
（amataraly		
	＂．－1＂1 \％	
以－7\％mend	S－4］	

```
Appematix E-w
COASTAK STREAB WHERE SURPLUS EGQS HAVE EEEN AVALAELE (TO 19E)
```


Hatcheries on the Columbia River and Oregon fishing ports.

From: Lander, 1970.

Appendix B-5.

From: Wahle and Smith, 1979.

```
    *6T-0%6T "sumeata teqse00 wobeun
```



```
                            * 1.8
```



```
                                    * w%om%
```


APPENDIX C-1

THE NUMBER OF TROLL CAUGHT CHINOOK LANDED IN OREGON PORTS, 1952 to 1981.

From: Mullen, R., unpublished.
the number of troll-caught chinook landed in all oregon ports
SPECIES..YR JAH FEB MAR APR MAY JUM JH AUG SEPT OCT NOU DEC TOTAL,

| 52 | 0 | 0 | 7233 | 19870 | 13687 | 37951 | 59136 | 72095 | 28046 | 9729 | 0 | 0 | 247747 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 53 | 0 | 0 | 2342 | 22550 | 4550 | 9355 | 32973 | 59124 | 19660 | 368 | 0 | 0 | 150922 |
| 54 | 0 | 0 | 11398 | 13438 | 9967 | 19487 | 45665 | 67498 | 27429 | 2514 | 0 | 0 | 197396 |
| 55 | 0 | 0 | 3882 | 15554 | 41494 | 54918 | 40159 | 100492 | 51276 | 2101 | 0 | 0 | 309876 |
| 56 | 0 | 0 | 0 | 24166 | 10263 | 41543 | 76859 | 157805 | 27616 | 4793 | 0 | 0 | 343045 |
| 57 | 0 | 0 | 0 | 4528 | 15671 | 51809 | 76911 | 77614 | 30227 | 157 | 0 | 0 | 256917 |
| 58 | 0 | 0 | 0 | 1722 | 14367 | 63016 | 53044 | 29223 | 10884 | 2620 | 0 | 0 | 174876 |

59	0	0	0	2950	4643	17341	10275	14287	3688	700	0	0
60	0	0	0	2987	17047	12905	27745	48657	15007	3486	0	0
607834												

61	0	0	0	1542	4559	19469	43534	29526	14545	2961	0	0	116136
62	0	0	0	736	2575	9874	14147	18345	6406	476	0	0	52559
63	0	0	0	2847	8027	28960	67816	39680	4699	742	0	0	152771
64	0	0	0	1366	8095	7588	17899	25797	5374	1386	0	0	67505
65	0	0	0	103	4179	10310	15994	14539	10850	1749	0	0	57724
66	0	0	0	660	8194	18471	31417	19715	15332	1780	0	0	95569
67	0	0	0	4396	8082	18652	34179	24321	9555	560	0	0	99745
68	0	0	0	4502	15937	14422	35793	37215	1555	726	0	0	110150
69	0	0	0	488	7470	51898	36769	34726	6074	2860	0	0	140285
70	0	0	0	1727	15154	35107	29004	43625	28290	11781	0	0	164688

| 71 | 0 | 0 | 0 | 1367 | 10743 | 23417 | 20605 | 38065 | 3465 | 5264 | 0 | 0 | 102926 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 72 | 0 | 0 | 0 | 16 | 6707 | 33681 | 32766 | 33670 | 11504 | 8943 | 0 | 0 | 127287 |
| 73 | 0 | 0 | 0 | 649 | 5596 | 25697 | 102817 | 145708 | 47884 | 34916 | 0 | 0 | 363267 |
| 74 | 0 | 0 | 0 | 496 | 13394 | 22639 | 58052 | 79420 | 37652 | 10561 | 1767 | 129 | 224110 |
| 75 | 0 | 0 | 0 | 130 | 5178 | 32204 | 68994 | 51760 | 56705 | 8821 | 859 | 57 | 224708 |
| 76 | 0 | 0 | 0 | 0 | 16409 | 33812 | 46771 | 53857 | 23187 | 8459 | 1854 | 0 | 184345 |
| 77 | 0 | 0 | 0 | 0 | 18359 | 50432 | 107568 | 116350 | 32701 | 10463 | 4141 | 0 | 340014 |
| 78 | 0 | 0 | 0 | 17 | 3199 | 40597 | 63087 | 46870 | 25023 | 9288 | 3451 | 0 | 191532 |
| 79 | 0 | 0 | 0 | 0 | 10872 | 375 | 80386 | 109738 | 16299 | 25726 | 2101 | 0 | 245487 |

the number of troll-calugh chinook lamded in all oregon ports

SPECIES., YR	JAA	FEB	HAR	APR	MAY	JUN	JUR	AUG,	SEPT	OCT	NOV	DEC	TOTAL.
80	0	0	0	0	25493	29554	39591	72524	25996	15154	1057	0	209369
CHINOOK													

number of salmon landed by the troll fishery in agtoria

ASTORIA
number of salmon landed by the troll fishery in bahdom

Munber of salmon lambed by the troll fishery in brookings

SPECIES.. PORT......... YR		JAN	FEB	HAR	APR	MAY	JUN	Jul	AUS	SEPT	OCT	NOW	DEC	TOTAL.
CHINOCK	BROOKIMGS 52			0	0	0	0	4	10	0	0			14
inook	BROOKINGS 53			0	0	0	0	6	13	0	0			19
wiINOOK	BROOKINGS 54			0	0	0	12	125	38	0	0			175
CHINOOK	BROOKINGS 55			0	0	0	91	185	114	3	0			393
CHINOOK	BROOKINGS 56				181	39	11	260	176	1	0			668
CHINOOK	BROOKINGS 57				0	84	263	136	201	6	2			692
CHINOOK	BROCKINGS 58				0	258	204	388	255	72	39			1216
CHINOOK	BROOKINGS 59				0	96	290	65	78	137	34			700
CHINOOK	BRCOKINGS 60				0	0	107	1107	2426	4649	2415			10704
CHINOOK	BROQKINGS 61				85	2964	9950	14696	11306	173	468			39642
CHINOOK	BROOKINGS 62				165	1111	1233	5017	7809	638	97			16070
CHINOAK	BROOKINGS 63				4	1913	6451	26080	1980	1235	412			38075
CHINOOK	BROOKINGS 64				33	322	1317	8597	2490	1157	1232			15148
CHINDOK	BROOKINGS 65				59	984	2174	7790	2397	377	683			14466
CHINOOK	BROOKINGS 66				2	262	3544	2917	820	1050	1295			9890
CHINOOK	BROOKINGS 67				1988	3967	2843	7486	1200	715	492			18691
CHINOOK	BRDOKINGS 68				2	1272	1328	5200	1721	252	383			10158
CHINOOK	BROOKINGS 69				11	2841	14579	6423	2020	168	1971			28013
CHINOOK	BROOKINGS 70				24	1287	8634	7638	9471	2230	714			29998
CHINOOK	BROOKINGS 71				1	1652	11578	13982	16736	816	2192			46957
CHingok	BROAKINGS 72				0	2490	7676	7547	2301	2583	5348			27945
Chimook	BROOKIMGS 73				106	686	4344	12522	979	1094	3821			23552
CHINOOK	BROOKINGS 74				42	224	1503	4624	2251	2794	1090	781	108	13417
CHINOOK	BROOKIMGS 75				3	208	3693	19619	2187	3448	1349	583	47	31137
CHINDOK	BROokings 76					95	2364	4471	2413	3605	3453	758		17159
CHINOOK	BROOKINGS 77					1752	3066	12620	6689	3805	3601	1530		33063
CHINOOK	BROOKINGS 78					726	3969	2116	1338	2648	2274	1877		14948
[NOOK	BROOKINGS 79					412		31164	19972	4804	13813	1252		71417
CHINOOK	BROOKINGS 80					5077	1224	2500	7154	9254	2036	772		28017
CHINOOK	BROOKINGS 81					4089	28	4246	34131	13372	9622	1022		66510

BROOKINGS
nuaber of salmon landed by the troll fishery in coos bay

COOS BAY
number of salmon landed by the troll fishery in depoe bay

DEPOE BAY

Appendix C-1. 8
nukber of salmon landed by the troll fishery in garibaldd

NuHber of salhon landed by the troll fishery in gold beach

SPECIES.,	ORT......... YR	Jam	FEB	MAR	APR	MAY	JUN	Jth	Alla	SEPT	$0 C T$	NOW	DEC	total.
CHINODK	GOLD BEACH 52			0	0	0	0	0	0	0	0			0
'INOOK	GOLD BEACH 53			0	0	0	0	0	0	0	0			0
LHIMOOK	GOLD BEACH 54			0	0	0	0	0	0	0	0			0
CHINDOK	GOLD BEACH 55			0	0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 56				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 57				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 58				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 59				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 60				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 61				0	10	160	100	52	55	5			382
CHINOOK	GOLD BEACH 62				9	6	2	1	21	11	1			51
CHIMOOK	G0LD BEACH 63				0	0	0	80	73	2	0			155
CHINOOK	GOLD BEACH 64				0	11	16	147	58	17	0			249
CHINDOK	GOLD PEACH 65				0	3	76	167	238	96	0			580
CHINOOK	GOLD BEACH 66				0	16	185	49	185	244	1			680
CHINOOK	GOLD BEACH 67				0	41	50	218	42	0	0			351
CHINOAK	GOLD BEACH 68				0	14	9	576	570	60	0			1229
chinook	GOLD BEACH 69				0	0	442	192	666	26	0			1326
CHINOOK	GOLD BEACH 70				0	0	201	260	403	35	0			899
CHINOOK	GOLD BEACH 71				0	0	182	1001	2496	226	0			3905
CHINOOK	GOLD BEACH 72				0	10	1016	2027	4281	3051	155			10540
CHIMOOK	GOLD BEACH 73				0	11	700	5745	1989	1140	54			9639
CHINOOK	GOLD BEACH 74				0	0	237	1578	773	457	0			3045
CHINOLK	GOLD BEACH 75				0	0	660	2714	821	1118	2			5315
CHINOOK	GGLD BEACH 76					0	74	1982	5465	3039	0			10560
CHINOOK	GOLD BEACH 77					0	206	11769	9152	3187	123			24437
	GÜLD BEACH 78					1	950	2564	4639	2856	41			11051
inook	GOLD BEACH 79					1	67	2380	18062	963	147			21620
CHINOOK	GOLD BEACH 80					475	414	766	6206	2239	21	5		10126
CHINOOK	GOLD BEACH 81					57		149	4681	66	8			4961

GOLD BEACH
nuhber of salhon landed by the troll fishery in nelport

NELPORT

SPECIES., PORT......... YR	JAN	FEB	HaR	APR	MAY	JUN	JUL	AUG	SEPT	OCT	NOU	DEC YOTAL.
CHINOOX PACIFIC CITY 52			0	0	0	0	16	2	12	0		30
VOOK PACIFIC CITY 53			0	0	0	0	3	7	0	0		10
LTHOOOK PACIFIC CITY 54			0	0	0	2	81	48	0	0		131
CHINOOK PACIFIC CITY 55			0	0	0	10	112	37	40	0		199
CHINOOK PACIFIC CITY 56				0	2	31	299	768	18	1		1119
CHINOOK PACIFIC CITY 57				0	0	47	173	44	143	6		413
CHINOOK PACIFIC CITY 58				0	4	6	635	455	161	0		1261
CHINOOK PACIFIC CITY 59				0	12	92	152	300	27	14		597
CHINOOK PACIFIC CITY 60				0	7	30	89	50	84	0		260
CHINOOX PACIFIC CITY 61				0	0	7	63	91	37	4		202
CHINOOK PACIFIC CITY 62				0	0	0	6	33	46	0		85
CHINOOK PACIFIC CITY 63				0	0	3	21	53	13	0		90
CHINOOK PACIFIC CITY 64				0	0	4	38	114	164	0		320
CHINOOK PACIFIC CITY 65				0	0	8	9	17	43	0		77
CHINOOK PACIFIC CITY 66				0	1	33	210	191	51	0		486
CHINOOK PACIFIC CITY 67				0	2	69	110	237	96	0		514
CHINOOK PACIFIC CITY 68				0	0	149	568	859	249	296		2121
CHINOOK PACIFIC CITY 69				0	2	238	271	615	245	86		1457
CHINOOK PACIFIC CITY 70				34	36	606	274	409	334	60		1753
CHINOOK PACIFIC CITY 71				0	1	83	170	910	235	17		1416
CHINOOK PACIFIC CITY 72				0	11	240	281	1073	154	13		1772
CHINOOK PACIFIC CITY 73				0	0	242	820	1552	565	113		3292
CHINOOK PACIFIC CITY 74				0	0	410	1103	820	261	52		2646
CHINOOK PACIFIC CITY 75				0	1	490	824	1191	46	0		2552
CHINOOK PACIFIC CITY 76					0	839	868	751	51	39		2548
CHINOOK PACIFIC CITY 77					7	594	2682	1292	158	92		4825
ruTNOOK PACIFIC CITY 78					1	489	968	860	63	62		2443
, 100K PACIFIC CITY 79					1		315	619	6	3		944
CHINOOK PACIFIC CITY 80					2	13	229	1277	146	8		1675
CHINOOK PACIFIC CITY 81					2		1414	1098	12	38		2564

PACIFIC CITY

NUABER OF SALHON LANDED bY THE TROLL FISHERY IN PORT ORFORD

SPECIES..	PORT...o.oo. YR	JAA	FEB	MAR	APR	MAY	. NM $^{\text {M }}$	JUL	All 6	SEPT	OCT	NOV	DEC	TOTAL.
CHINOOK	PORT ORFIRD 52			0	0	0	2777	2761	8594	920	0			15052
- yook	PORT ORFORD 53			0	0	0	93	1525	6213	32	0			7863
6. NOOK $^{\text {N }}$	PORT ORFORD 54			0	0	0	140	1576	9425	898	0			12039
CHINOOK	PORT ORFORD 55			0	0	0	1755	1980	4233	936	0			8904
Chinook	PORT ORFORD 56				0	2	341	2980	8379	12	0			11714
CHINOOK	PORT ORFORD 57				0	11	2926	5925	13198	821	0			22881
CHINOOK	PORT ORFORD 58				0	752	8793	2946	618	1764	135			15008
CHINOOK	PORT ORFORD 59				0	13	1258	1905	272	156	32			3636
CHINOOK	PORT ORFORD 60				0	22	593	1858	1201	919	0			4593
CHINOOK	PORT ORFORD 61				0	0	11	129	961	118	0			1219
CHINOOK	PORT ORFORD 62				0	0	25	28	639	66	0			758
CHINOOK	PORT ORFORD 63				0	14	549	3390	6108	30	0			10091
CHINOOK	PORT ORFORD 64				0	0	351	1603	1731	217	0			3902
CHINOOK	PORT ORFORD 65				0	1	919	1072	1912	6	0			3910
CHINOOK	FORT ORFORD 66				0	0	192	16250	3628	2044	0			22114
CHINOOK	PORT ORFORD 67				0	23	379	1808	1563	730	0			4503
CHINOOK	PORT ORFORD 68				4	17	221	4107	2459	110	19			6937
CHINOOK	PORT ORFORD 69				17	89	2923	3529	2738	172	511			9979
CHINOOK	PORT ORFORD 70				8	65	2711	2690	5425	3786	250			14935
Chinook	PORT ORFORD 71				0	97	1149	146	4609	17	770			6788
CHINOOK	PORT ORFORD 72				0	102	3905	2748	5531	2727	762			15775
CHINOOK	PORT ORFORD 73				0	37	2501	8288	6494	3375	834			21529
CHINOOK	PORT ORFORD 74				6	2	1085	3316	11205	1719	705	765	21	18824
CHINOOK	PORT ORFORD 75				1	4	1685	4316	8644	18755	506	276	10	34197
CHINOOK	PORT ORFORD 76					15	673	2120	5144	4586	846	1096		14480
CHINOOK	PORT ORFORD 77					2	1705	10571	7458	6814	1186	2611		30347
CHINOOK	PORT ORFORD 78					9	5509	5145	4482	2877	1900	1330		21252
;00k	PORT ORFORD 79					0		2840	9393	465	896	847		14441
CHINOOK	PORT DRFORD 80					725	2436	4916	14312	2238	769	275		25671
CHINOOK	PORT ORFORD 81					719		2099	5805	1217	498	326		10664

PORT ORFORD

NUABER OF SALHON LANDED BY THE TROLL FISHERY IN SIUSLAH BAY

SPECIES.,	PORT.0.0.... YR	JAM	FEB	Mar	APR	HAY	JUM	NH.	Alla	SEPT	$0 C T$	NOU	TOTAL.
CHINOOK	SIUSLAM BAY 52			0	0	35	1804	2959	5003	33	4		9838
¢ Y Y00k	SIUSLAy bay 53			0	0	0	494	2525	4723	1083	0		8825
L...A00K	SIUSLAH bay 54			0	,	87	1385	4255	5769	4925	652		17073
CHINOOK	SIUSLAY BAY 55			0	0	250	1328	541	5537	1541	0		9197
CHINOOK	siuslay bay 56				0	636	1504	7215	3062	213	0		12630
CHINOOK	SIUSLAH BAY 57				0	429	2333	3427	2941	548	2		9680
CHINOOK	SIUSLAH BAY 58				0	382	711	2086	1487	786	0		5452
CHINOOK	SIUSLAU BAY 59				0	495	1408	226	200	126	6		2461
CHINOOK	SIUSLAU BAY 60				339	1448	727	1878	1060	180	3		5635
CHINOOK	SIUSLAH BAY 61				8	0	636	3818	638	929	173		6202
CHINOOK	SIUSLAU BAY 62				62	65	1908	2955	650	295	23		5958
CHINOOK	gIUslah bay 63				49	114	4130	10196	9084	279	0		23852
CHINOOK	SIUSLAE bay 64				0	85	1145	1933	1149	27	8		4347
CHINOOK	SIUSLAU BAY 65				12	1357	655	455	339	108	0		2926
CHINOOK	SIUSLAE BAY 66				0	40	1417	481	746	53	0		2737
CHIMOOK	SIUSLAH BAY 67				0	0	40	171	40	1	0		252
CHIMOOK	SIUSLAH BAY 68				0	56	156	74	89	3	0		378
CHIMOOK	SIUSLAE BAY 69				0	0	44	25	32	11	0		112
CHINOOK	SIUSLAH BAY 70				0	0	108	50	275	0	0		433
CHINOOK	SIUSLAH BAY 71				0	0	28	123	247	110	0		508
CHIMNOK	SIUSLAH BAY 72				0	0	386	309	39	5	0		739
CHINOOK	SIUSLAH bay 73				,	0	116	2161	3025	129	47		5478
CHINOOK	SIUSLAh bay 7a				0	5	24	694	487	54	18		1282
CHINOOK	SIUSLAK bay 75				0	0	485	1996	2197	243	0		4921
CHINOOK	SIUSLAU BAY 76					12	339	767	1110	8	42		2278
CHINOOK	SIUSLAH BAY 77					2	110	1269	747	179	0		2307
CHINOOK	SIUSLAH Bay 78					1	553	972	267	331	0		2124
DOK	SIUSLAH BAY 79					143	1	1942	1648	27	1		3762
CHINOOK	SIUSLAK BAY 80					1268	505	1387	664	107	5		3936
CHIMOOK	SIUSLAU BAY 81					331		1463	487	0	5		2286

SIUSLAH BAY
nuaber of salyon landed by ihe troll fishery in hinchesier

SPECIES.	ORT........ VR	JAM	FEB	MAR	APR	may	JUM	Jth	Alls	SEPT	OCT	NOV	DEC	total.
CHINOOR	HINCHESTER 52			0	0	6	723	1274	1300	119	6			3429
r."y00k	HIACHESTER 53			0	0	3	119	409	561	107	6			1205
ᄂ....100\%	HINCHESTER 54			0	8	222	1281	6618	1516	1283	97			11025
CHINOOX	HIMCHESTER 55			0	464	9417	8955	7225	6801	1298	30			34190
CHINOOK	HINCHESTER 56				393	3018	7995	5957	12352	1536	57			31308
CHINOOK	HINCHESTER 57				20	2126	6140	4065	2376	645	16			15388
chindok	HINCHESTER 58				13	1279	2813	1764	681	272	93			6915
chimoor	HINCHESTER 59				15	246	466	233	143	90	26			1219
CHINOOK	HINCHESTER 60				25	405	141	282	1104	510	45			2512
Chinook	HINCHESTER 61				6	78	175	1022	2575	560	55			4471
CHINDOK	HINCHESTER 62				10	39	298	416	821	52	1			1637
chinook	HINCHESTER 63				1	93	841	673	673	113	0			2394
Chinook	HINCHESTER 64				0	59	169	294	602	152	0			1275
CHINOOK	HINCHESTER 65				0	148	269	516	0	0	0			933
CHINOOK	HINCHESTER 66				0	35	341	528	273	186	3			1366
CHINOOK	HINCHESTER 67				55	40	212	598	287	95	5			1292
CHINOOK	UINCHESTER 68				15	324	1647	1747	729	77	0			4539
chinook	HINCHESTER 69				12	143	1993	2260	1270	390	0			6068
CHINOOK	HINCHESTER 70				0	76	1426	1365	1779	182	0			4828
CHINOOK	HINCHESTER 71				0	8	577	348	669	254	47			1903
CHINOOK	HINCHESTER 72				0	5	908	1793	127	321	355			3509
CHINOOK	HINCHESTER 73				7	44	1243	10706	7954	713	1395			22062
chindok	HINCHESTER 74				0	37	434	2232	1336	333	34			4406
CHINOOK	HINCHESTER 75				11	42	2721	2748	1876	1180	4			8582
CHINOAK	HINCHESTER 76					422	1713	2550	2072	217	29			7003
CHINOOK	HINCHESTER 77					1600	1127	5566	8157	373	89			16912
chimook	HINCHESTER 78				17	102	1144	3376	3152	186	6			7983
100k	HINCHESTER 79					1217		4897	2719	94	80			9007
Chinook	HINCHESTER 80					704	2963	4193	1522	985	37			10404
chimook	HINCHESTER 81					131		2403	858	64	5			3461

SPECIES..		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	OCT	NOU	UEC	rotal.
Chinook	Musc.	59					1	16	3	1	6				27
CHINOOK		60					1	2	1	5	20	4			33
700		61							12	0	8				20
Chimook		62				4	1	3	5	14	3	2			32
CHINOOK		63				1	257	26	6	7					297
CHIMOOK		64					3	7	17	26	22	8			76
CHINOOK		65					15		15	20	15	8			73
CHINOOK		66							3	249					252

Misc.

APPENDIX C-2

TOTAL CHINOOK POUNDS (ROUND) LANDED BY THE TROLL FISHERY IN OREGON PORTS, 1952 to 1981.

From: Nullen, R., unpublished.

54	0	0	129897	172729	108750	237783	497614	757602	282271	26199	0		02212845
55	0	0	49342	183317	533288	669553	504869	1202651	535648	23675	0		03702443
56	0	0	0	303125	166815	616244	1085365	1890483	283638	54135	0		04399805
57.	0	0	0	50317	198730	799030	942684	757233	275124	2070	0		03025188
58	0	0	0	19586	149029	610611	528177	374127	124709	28396	0		$0 \quad 1834635$
59	0	0	0	26813	46987	172988	103059	139875	36769	6408	0		0532699
60	0	0	0	31501	194976	151211	337406	611321	163435	37772	0		01527622
61	0	0	0	17668	49331	231454	547733	381022	154230	30234	0		- 1411672
62	0	0	0	9722	30514	136455	202232	219850	83057	5486	0	0	0687316
63	0	0	0	32937	90267	322747	704586	412505	48029	7535	0	0	1618606
64	0	0	0	13250	81784	83143	189924	281286	56237	17025	0	0	722649
65	0	0	0	1230	48567	124502	184908	164212	113720	21356	0	0	658495
66	0	0	0	6493	77063	200167	199184	242830	168043	25852	0	0	919832
67	0	0	0	45385	85893	241195	467516	317582	117048	8705	0	0	1283324
68	0	0	0	44223	156926	157236	374114	375814	21705	12403	0	0	1142421
69	0	0	0	6032	73916	513623	369694	327461	55551	35413	0	0	1381690
70	0	0	0	15511	158551	385167	345285	555401	340618	137251	0	0	1937784
71	0	0	0	14435	118086	273849	234171	415860	39328	55088	0	0	1150817
72	0	0	0	165	69294	408345	368300	376601	126719	149866	0	0	1499290
73	0	0	0	8701	65351	256115	1090454	1651972	446729	461197	0	0	3980519
74	0	0	0	5287	138441	289921	722104	926907	409397	107052	31853	3003	2633965
75	0	0	0	1724	57288	481701	978432	694733	643960	94134	17501	1353	2970826
76	0	0	0	0	191998	400062	580512	650678	258950	102750	24863	0	2209813
77	0	0	0	0	184767	609336	13000851	1335676	355012	132746	67064	0	3984686
78	0	0	0	170	35277	455675	715303	496351	273863	127804	73221	0	2177664
79	0	0	0	0	149084	4258	10201081	1282972	203900	267265	39377	0	2966964
80	0	0	0	0	313785	357055	481712	859180	293205	172408	19889	0	2497234
81	0	0	0	0	274042	7774	364583	803393	167488	149060	23094	0	1809434

Appendix C-2.2
TOTAL CHIMOOK POUNDS (ROUND) LANDED BY THE TROLL FISHERY IN ALL OREGON PORTS
SPECIES..YR JAAM FEB HAR APR MAY JUN JH AUG SEPT OCT NOU DEC TOTAL.

25	0	0	0	0	1347	16109	227906	6210067	766748	6965	0		- 529142
26	0	0	0	0	311	34329	239208	272949	93576	2192	0		572565
27	0	0	0	0	52336	99034	484345	541645	-80828	11645	967		- 1270800
28	0	0	0	0	118448	45948	162664	454615	158713	6518	1035	0	947941
29	0	0	0	806	290568	181014	345212	2474182	115830	7588	80	0	1415278
30	0	0	9352	77502	63692	181034	177968	326034	41143	1694	142	0	881561
31	0	0	0	2492	45121	28880	54271	81809	18492	5436	0	0	236501
32	0	0	0	17136	10304	44296	35548	93052	30877	27982	0	0	259195
33	0	0	0	12274	0	227924	736108	849069	28004	27235	969	0	1681583
34	0	0	0	0	276	5156	319406	278777	65348	29487	0	0	698450
35	0	0	135	17102	1405	47306	217744	141934	48682	10084	219	14	484625
36	0	895	4039	133337	2958	5394	45166	437947	528574	248421	22029	612	1429372
37	0	0	0	39	14714	29765	530005	668901	134308	58595	928	0	1437255
38	0	0	107	69932	633	134065	297057	160278	41163	4916	7	0	708158
39	0	0	18245	75655	2025	164445	207459	98020	35866	12987	100	0	614802
40	0	0	7622	58877	27027	99890	359331	276537	120864	7411	0	0	957559
41	0	125	93315	56762	66762	233754	279530	516716	314855	8055	89	94	1570057
42	0	94	7507	91733	126036	89984	171281	85681	77005	979	724	141	651165
43	62	131	51623	83735	31460	55467	99113	127181	29367	7816	3722	1456	491133
44	16	288	58085	143008	86119	230155	153322	406196	221110	32817	150	76	1331342
45	0	9870	14669	391838	409821	143298	38878	458832	434552	85755	8257	945	1996715
46	23	12780	185749	409431	282224	163519	244970	720329	386795	46519	133	156	2452628
47	41	31185	15813	247705	362858	122260	652455	799955	313794	19173	481	228	2565948
48	3317	916	2369	69560	232153	83045	238865	652938	213853	13429	366	0	1510811
49	0	0	616	91009	58765	135790	382174	570142	80657	13528	18	0	1332699
50	0	0	1807	82337	52343	242460	132775	279245	173919	6244	0	0	971130
51	0	0	31018	146645	97150	331144	10173956	601059.3	. 365922	10236	0	0	2600569
52	0	0	96283	231695	144320	469788	820739	949534	283648	94265	0	0	3089272
53	0	0	28393	268570	48578	129759	4804177	7735861	194770	3771	0	0	1926844

SPECIES. YR	JAM	FEB	MAR	AFR	may	JUH	Jth	ALG	SEPT	$0 C T$	NOV	DEC	total.
CHINOOK	ASTORIA 25	0	0	0	0	1347	15266	103279	123958	29833	6931	0	0	280614
chres $^{\text {reok }}$	ASTORIA 26	0	0	0	0	11	33949	163233	246485	9313	1610	0	0	454604
L. Jok	ASTORIA 27	0	0	0	0	52336	86791	440521	452472	70943	9927	967	0	1113957
CHINOOK	ASTORIA 28	0	0	0	0	15390	40048	140132	357602	148884	4171	241	0	706468
CHINOOK	ASTORIA 29	0	0	0	806	259010	177978	99680	299102	61587	2372	80	0	900615
CHINOOK	Astoria 30	0	0	9352	77502	63692	124931	91306	204649	28147	149	142	0	599870
CHINOOK	AStORIA 31	0	0	0	2492	37783	10583	13137	56732	17305	3356	0	0	141388
CHINOOK	ASTORIA 32	0	0	0	17136	10304	38209	14900	51116	26271	27982	0	0	185918
CHINOOK	ASTORIA 33	0	0	0	12274	0	219650	562151	510860	6967	3443	969	0	1316314
CHINOOK	ASTORIA 34	0	0	0	0	254	458	206003	224442	40020	26963	0	0	493140
CHINOOK	ASTORIA 35	0	0	135	17102	445	38909	69994	52768	14449	8672	207	14	202495
CHINOOK	ASTORIA 36	0	895	4039	133337	2680	2778	62	203565	206418	87990	6591	60	648415
CHINOOK	ASTORIA 37	0	0	0	39	14500	14691	58277	197767	40534	29714	906	0	356428
CHINOOK	ASTORIA 38	0	0	107	69089	228	25267	21540	39547	10103	2521	7	0	168409
CHINOOK	ASturia 39	0	0	18245	75575	1847	779	24760	63533	8622	4754	100	0	198215
CHINOOK	ASTORIA 40	0	0	7622	58613	24861	88342	42975	86074	26776	6012	0	0	341275
CHINOOK	ASTORIA 41	0	125	93315	56762	66353	167518	18344	136634	294461	628	89	71	834300
CHINOOK	ASTORIA 12	0	71	7507	91733	124294	19946	3826	59782	24560	192	0	124	332135
CHINOOK	ASTORIA 43	41	108	51577	83722	31393	42117	3875	25432	3268	114	53	20	241720
CHINOOK	Astoria 44	0	288	58085	141734	85648	120116	39024	64615	7310	3529	0	66	520415
CHIMOOK	ASTORIA 45	0	9734	14668	390437	392599	79316	14641	59071	48574	17960	472	877	1028350
CHINOOK	ASTORIA 46	0	12723	185735	408334	170628	28975	32120	121192	125590	8097	108	156	1093658
CHINOOK	ASTORIA 47	41	28275	12752	34495	108727	25047	40604	313242	79320	3287	25	219	646034
CHINOOK	AStoria 48	3317	916	2369	66721	20060d	63641	36328	129504	45697	1566	366	0	551026
CHiNOOK	ASTORIA 49			454	33772	28142	24415	41337	81948	11533	2025	18		223644
CHINOOK	AStoria 50			1726	81723	48528	53660	16618	82999	6902	1202			293258
CHINOOK	ASTORIA 51			31018	141684	84391	29542	75016	52326	48986	2010			464973
r jok	Asturia 52			96283	231695	139308	98162	68895	117955	26278	47883			826259
Crisroak	AStORIA 53			28199	266530	46340	61915	5665!	48990	10347	2464			521436
CHINOOK	ASTORIA 54			129182	172399	72735	15369	19342	69320	37027	5210			520583
CHiNOOK	ASTORIA 55			48594	171471	93872	36798	4365!	98252	31334	2140			526110
CHINOOK	AStoria 56				289522	4669	9392	68004	91131	11293	2107			476118
CHINOOK	ASTORIA 57				45843	22890	9048	48763	38359	13073	118			178094
CHINOOK	AStoria 58				10291	4698	14188	21040	37048	4623	884			92772
CHINOOK	ASTORIA 59				19445	3994	11322	11378	24055	3032	1149			74375
CHINOOK	ASTORIA 60				17485	1991	14476	28599	22525	8223	1430			94729
CHINOOK	Astoria 61				6641	4807	24552	18363	41583	17416	1211			114573
CHINOOK	ASTORIA 62				1342	8976	35662	18357	15030	2818	758			82953
CHINOOK	ASTORIA 63				32125	57989	57867	11110	22262	6147	1322			188822
CHINOOK	ASTORIA 64				9769	60460	14434	16384	6954	10463	587			119051
CHINOOK	ASTORIA 65				113	9442	6741	6649	16685	8730	7144			55504
CHINOOK	ASTORIA 66				5410	64897	66347	14374	9969	17114	2953			181064
Chis Ook	Astoria 67				21928	33734	46089	16120	70287	17969	444			206581
CHINOOK	ASTORIA 68				41045	114701	31732	15377	10770	5301	130			219056
CHINOOK	ASTORIA 69				1106	8837	55485	18560	15069	9021	70			108148
CHIMOOK	ASTORIA 70				13768	116615	73376	17707	17500	4754	221			243941
CHINOOK	AgToria 71				13752	79477	47735	8556	10633	2155	323			162631
CHSNOOK	Astorla 72				143	30139	38174	10640	5852	3477	297			88722
CHINOOK	ASTORIA 73				5875	37005	22166	9773	7813	3010	1722			87364
CHINOOK	Astoria 74				3780	129150	13905	18104	10842	6355	1308			183444
CHINOOK	ASTORIA 75				838	43973	41422	23079	9254	3272	301			122139
CHINOOK	ASTORIA 76					151959	90481	32892	18938	11674	2540			308484
CH:NOOK	ASTORIA 77					54205	96900	42137	14112	14524	8221			230099
[Jok	ASTORIA 78					12638	67886	66831	12835	1734	28636			190553
CHINOOK	Astoria 79					30485	1640	24727	48392	11194	82			116520

total salmon pounds (round) landed by the troll fishery in astoria

SPECIES..	PORT........ YR	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEPT	OCT	NOU	DEC	TOTAL.
CHinoor	ASTORIA 80					69764	2034	15007	31917	4363	263			123348
Curnook	ASTORIA 81					114869	3325	22576	6839	277	370			148256

SPECIES. YR	JAK	FEB	MAR	APR	MAY	HAA	HtL	AUG	SEPT	OCT	NOU	DEC	TOTAL.
CHIMOOX	BAMDOM 52			0	0	0	0	3529	3499	3204	0			10232
-'-"90\%	BANDOM 53			0	0	0	0	283	9572	227	0			10082
L....000K	BAMDON 54			0	0	65	128	804	50569	13248	0			64814
CHIMOOK	bandom 55			0	0	225	9392	15666	44671	9221	0			79175
CHIMOOK	BANDON 56				0	0	188	2487	29674	20543	0			52872
CHINOOK	BAMDON 57				0	0	6971	39585	33272	2180	0			82008
CHINOOK	BANDOH 58				0	420	18377	15670	6868	3022	18			44375
CHINOOK	BANDON 59				98	288	5078	1214	889	0	0			7568
CHINOOK	bandon 60				0	0	104	12012	21693	6589	262			40660
CHiNOOK	BARDOM 61				32	0	897	3311	3628	2531	0			10399
CHIMOOK	BANDON 62				18	14	421	1234	7907	754	0			10348
CHIMOOK	BANDON 63				0	0	4657	26137	44161	150	0			75105
CHiNOOK	BARDON 64				0	30	1865	4584	29580	330	0			36389
CHIM@OK	BANDOM 65				0	0	366	1466	4456	326	0			6614
CHINOOK	BANDON 68				0	0	783	7365	15669	7521	0			31338
CHINOOK	Bandom 67				0	364	5756	32857	23824	10054	0			72855
CHINOOK	BANDON 68				0	0	1104	10398	87099	133	0			98734
CHINOOK	BAMDON 69				0	1084	10151	19122	57024	0	0			87381
Chimook	BANDON 70				0	7108	12237	31331	48132	49009	4916			152733
CHINOOK	BAMDON 71				0	392	4290	5376	36815	1240	0			48113
CHEMOOK	BANDON 72				0	1298	26142	12967	29174	1298	21			70900
CHINOOK	bandon 73				0	0	12352	71999	103857	22768	1065			212041
CHINOOK	BAHDON 74				0	0	5093	20969	129013	80322	6553			241950
Chimook	bandon 75				0	0	19387	54474	75503	80836	2752			232952
chimook	bandon 76					0	10193	35232	76820	23634	7780			153659
CHENOOK	bandon 77					22	31678	78892	115539	37909	2842			266882
Chinook	BANDON 78					0	15887	35162	29901	16975	96			98021
00K	bandon 79					50		32493	84216	5074	240			122073
CHinook	BANDON 80					0	27631	18213	33040	3821	968			83673
CHINOOK	BANDON 81					10		2496	30205	0	0			32718

BANDON

Appendix C-2.6
TOTAL SALHON POUNDS (ROUND) LANDED BY THE TROLL FISHERY IN BROOKINGS

SPECIES., PORT........ YR		JAN	FEB	HAR	APR	HAY	JUN	JUL	aug	SEPT	OCT	NOU	DEC	TOTAL.
CHIMORX	BROOKINGS 52			0	0	0	0	48	123	0	0			171
crinnox	BROOKINGS 53			0	0	0	0	88	153	0	0			241
C. SOK	BROOKINGS 54			0	0	0	127	1243	445	0	0			1815
chinota	BROOKINGS 55			0	0	0	1111	2297	1356	33	0			4797
CHINOOK	BROOKINGS 56				2060	659	152	3552	2057	9	0			8489
CHINOOK	BROOKINGS 57				0	1091	3634	1626	1816	50	25			8242
CHiNOOK	BROOKINGS 58				0	2558	1987	3849	2822	716	390			12322
CHINOOK	brooking 59				0	987	2739	668	829	1354	332			6909
CHINOOK	BROOKINGS 60				0	0	1222	13559	29475	49391	25645			119292
chimook	BROOKIMGS 61				991	30945	116032	175062	145041	1843	4649			474563
CHINOOK	BROOKINGS 62				2198	12957	16816	71297	90808	7871	1080			203027
CHIMCOK	BROOKINGS 63				41	18783	63537	259178	20449	12168	4053			378209
CHIMNOK	BROOKINGS 64				321	3288	14076	82008	23992	12192	15110			150987
Chinook	BROOKINGS 65				669	10139	24496	84807	29447	4431	10017			154006
CHINOOK	BROOKINGS 66				30	2596	37924	32415	8781	13078	20506			115330
chimook	BROOKINGS 67				19794	45019	34656	90822	14750	9060	7619			221720
CHIMOOK	BROOKINGS 68				20	11870	14138	49966	18959	3467	6005			104425
Chinook	BROOKINGS 69				105	26667	134423	62669	20881	1887	25484			271916
CHINOOK	BROOKINGS 70				271	14128	94971	81087	109626	26680	11029			337792
CHINOOK	bROOKINGS 71				10	19267	135366	146806	156502	7748	26316			492015
CHINOOK	BROOKINGS 72				0	25507	84178	75243	28244	31905	103866			348943
CHIMOOK	BROOKINGS 73				1987	14941	47875	123207	10420	10779	70380			279589
ChinOOK	BROOKINGS 74				431	2412	17389	49291	23668	31451	17323	15607	2599	160171
CHINOOK	BROOKINGS 75				27	3259	43610	227563	28599	46967	21657	10572	1070	383324
Chinook	BROOKINGS 76					1382	27746	48016	25729	38309	49375	10512		201069
CHINOOK	BROOKINGS 77					19301	35274	134880	71422	47045	51858	29052		388832
CHIMEOK	BROOKINGS 78					7018	38096	20253	14857	31840	33277	43130		188471
1 门ок	BROOKINGS 79					3435		319042	201282	68415	134484	21683		748341
CHINOOK	BROOKINGS 80					61967	14422	27622	77373	102106	27575	13244		324309
CHINOOK	BROOKINGS 81					40296	263	42540	345328	132329	116610	17019		694385

BROOKINGS

YOTM SALHON POUNDS (ROLMD) LANDED BY THE TROLL FISHERY IN COOS BAY

SPECIES.	PORT........ YR	JAH	FEB	HAR	APR	HAY	JOM	Jut	AU6	SEPT	$0 C T$	NOV	DEC	rotal.
CHIMOOK	coos bay 80					48117	115459	205281	20824A	83100	80098	103		740402
chranok	COOS bay 81					24176	696	55643	132602	15926	15892	560		244895

TOTAL SALHON POUNDS (ROUND) LANDED BY THE TROLL FISHERY IN DEPGE BAY

UEPOE BAY

Appendix C-2. 10
total salmon pounds (round) landed by the troll fishery in garibaldi

garibaldi
total salmon pounds (rounds) landed by the troll fishery in cold beach

SPECIES. .	ORT........ YR	JAN	FEB	MAR	APR	MAY	JUM	JUL	AUS	SEPT	OCT	NOU	DEC	TOTAL,
CHINOOX	GOLD BEACH 52			0	0	0	0	0	0	0	0			0
r"-"00k	GOLD BEACH 53			0	0	0	0	0	0	0	0			0
L....OOK	GOLD BEACH 54			0	0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 55			0	0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 56				0	0	0	0	0	0	0			0
CHINOAK	GOLD BEACH 57				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 58				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 59				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 60				0	0	0	0	0	0	0			0
CHINOOK	GOLD BEACH 61				0	104	1868	1176	679	583	46			4456
CHINOOK	GOLD BEACH 62				115	72	21	19	242	141	13			623
CHINOOK	GOLD BEACH 63				0	0	0	842	716	17	0			1575
CHINOOK	GOLD BEACH 64				0	124	175	1725	630	172	0			2826
CHINOOK	GOLD BEACH 65				0	33	949	1995	2438	930	0			6345
CHINOOK	GOLD BEACH 66				0	169	2133	616	2208	2590	6			7722
CHINOOK	GOLD BEACH 67				0	551	653	3131	577	0	0			4912
CHINOOK	GOLD BEACH 68				0	138	102	5994	5513	683	0			12430
CHINOOK	GOLD BEACH 69				0	0	4291	1893	6085	223	0			12492
CHINOOK	GOLD BEACH 70				0	0	2400	3235	5107	376	0			11118
CHINOOK	G0LD BEACH 71				0	0	2516	14009	26540	1987	0			45052
chindok	GOLD BEACH 72				0	168	11489	24639	52460	29619	2032			120407
CHINOOK	GOLD BEACH 73				0	190	7630	60404	24215	9676	490			102605
CHIMSOK	GOLD BEACH 74				0	0	2820	18761	8282	4953	0			34816
CHINOOK	GOLD BEACH 75				0	0	8609	37904	11660	14879	33			73085
CHIMOOK	GOLD BEACH 76					0	904	24017	57963	36195	0			119079
CHINOOK	GOLD BEACH 77					0	2593	164371	108066	38977	1391			315398
chinook	GOLD BEACH 78					8	11542	33979	63572	36794	651			146546
30K	GOLD BEACH 79					20	584	29961	197938	14146	1885			244514
Chinook	GOLD BEACH 80					5604	4810	8635	71873	25254	191	76		116443
CHINOOK	GOLD BEACH 81					614		1969	51389	876	86			54734

GOLD BEACH

SPECIES. YR	JAM	FEB	MAR	APR	may	JWN	JUL	AUG	SEPT	OCP	NOU	DEC	YOTAL.
CHINOOX	NEUPORT 25	0	0	0	0	0	105	46289	86109	27838	34	0	0	160375
CHryook	NEHPORT 26	0	0	0	0	0	0	21927	9205	300	23	0	0	31455
C JOK	NEUPORT 27	0	0	0	0	0	4462	12740	14230	1308	512	0	0	33252
CHINOOK	HEUPORT 28	0	0	0	0	0	1462	5192	11009	2452	1208	350	0	21673
CHINOOK	NEUPORT 29	0	0	0	0	0	2087	73695	26177	30196	408	0	0	132563
CHINOOK	NELPORT 30	0	0	0	0	0	1321	38366	57128	8651	41	0	0	105507
CHINOOK	NEHPORT 31	0	0	0	0	1480	9067	17173	8480	241	0	0	0	36441
CHINOOK	NEHPORT 32	0	0	0	0	0	4261	14807	34751	1102	0	0	0	54921
CHINOOK	NEHPORT 33	0	0	0	0	0	798	106161	84618	7878	526	0	0	199981
CHINOOK	NEHPORT 34	0	0	0	0	0	2003	80760	45908	15146	107	0	0	143724
CHIMOOK	NEEPORT 35	0	0	0	0	960	7956	82616	29671	4770	213	0	0	126186
CHINOOK	NEYPORT 36	0	0	0	0	0	858	12055	99474	135679	102675	2351	552	353644
CHINOOK	HEHPORT 37	0	0	0	0	0	3236	454140	350879	33246	21735	22	0	863258
CHINOOK	NEHPORT 38	0	0	0	0	0	97762	141559	45990	14964	461	0	0	300736
CHINOOK	NEHPORT 39	0	0	0	0	0	148521	145539	23018	16158	2871	0	0	336107
CHINOOK	NEHPORT 40	0	0	0	0	1930	5125	124823	58510	36037	1071	0	0	227496
CHINOOK	NEHPORT 41	0	0	0	0	363	51734	157455	325367	3484	202	0	0	538605
CHINOOK	HEMPORT 42	0	0	0	0	712	38062	59632	2548	9441	287	146	0	110828
CHINOOK	NEHPORT 43	0	23	46	13	67	4010	35493	15948	3077	112	0	0	58789
CHINOOK	NEHPORT 44	0	0	0	1274	158	30429	44406	40461	19678	2498	5	0	138909
CHINOOK	NEHPORT 45	000	100	0	118	14330	6699	5512	142445	176893	39774	4468	52	390391
CHINOAK	NEHPORT 46	23	57	14	920	74404	52820	56928	321572	202986	28043	25	0	737792
CHINOOK	NEHPORT 47	0	225	270	132874	160419	53220	388762	377546	197134	13174	139	9	1323772
CHINOOK	NEHPORT 48	0	0	0	1911	24499	5755	67729	237928	123654	5919	0	0	467395
CHIMOOK	NEHPORT 49			38	50909	4494	87408	234061	259856	36359	9753	0		682877
chimook	NEHPORT 50			59	601	2804	134818	50449	54619	102989	899			347238
Chimoak	NEHPORT 51			0	2708	2965	209381	493523	163692	127455	7586			1007310
- nok	HELPORT 52			0	0	1321	248692	514554	370663	154321	36868			1326419
Cminduok	NEUPORT 53			0	2040	1476	22184	252650	409857	161062	639			849908
CHINOOK	NEHPORT 54			715	0	15491	107714	243804	184469	112830	6926			671949
CHINOOK	NEUPORT 55			0	3624	251831	272964	198226	414844	288291	19083			1448863
CHIMOOK	NEHPORT 56				7064	77211	330162	516604	431987	101620	37284			1501932
CHINOOK	NEHPORT 57				2066	43282	336067	297364	106838	155602	759			941978
CHINOOK	NELPORT 58				8794	36190	47886	173632	166128	52557	7257			492444
CHINOOK	NEYPORT 59				900	12327	40187	18686	54528	15388	1015			143031
CHINOAK	NEHPORT 60				9422	86302	38193	66241	138507	15698	4488			358851
CHINOOK	NEHPORT 61				2820	2022	34849	215149	59188	36181	12377			362588
CHINOOK	NEHPORT 62				3385	2159	30589	32735	33329	17349	1157			120703
CHIMOOK	NEHPORT 63				64	1460	38135	25634	30459	9644	40			105436
CHINOOK	MEHPORT 64				1980	8193	14142	10685	28944	6669	297			70910
CHINOOK	NEHPORT 65				0	1335	35371	28385	36256	63085	1968			166400
CHINOOK	NEHPORT 66				369	2043	40261	39779	66951	21254	1632			172289
CHIMOAK	NEHPORT 67				2811	3069	100779	83858	45267	13157	419			249360
CHINOOK	MEHPORT 68				2582	20364	29926	21037	20783	2840	217			97749
CHINOOK	NEHPORT 69				4060	17683	70563	11073	14430	2205	210			150224
CHINOOK	MEHPORT 70				177	10899	38581	31303	143599	42792	18152			285503
CHINOOK	NEGPORT 71				576	12501	23155	18545	43345	6327	425			104874
CHINOOK	NEHPORT 72				0	6984	34505	40303	74289	18017	19672			193770
CHINOOK	NEHPORT 73				493	10220	54009	190387	448124	87807	161157			952197
CHINOOK	HELPORT 74				877	2907	75197	222048	106155	42240	1977			451401
CHINOOK	NEUPORT 75				154	6599	111073	90445	111257	20040	2503			342070
CHINOOK	HEHPORT 76					7581	49244	131904	162123	16612	17317			384781
CHIPOOK	HEWPORT 77					40837	126817	146234	419607	32888	4631			771014
- .00k	MEHPORT 78					3949	101558	205982	171258	120343	25006	1765		629861
CHINOOK	TEHPORT 79					70724	190	213700	175943	59189	31422	32		550200

TOTAL SALHON POUNDS (ROUND) LANDED BY THE TROLL FISHERY IM NEHPORT

SPECIES.。 YR	JAN	FEB	MAR	APR	HAY	JUM	Jut	AUG	SEPT	069	NOV	DEC	TOTAL.
CHINOOK	NEHPORT 80					88098	116486	68963	208250	32340	49235	23		563395
r' '00k	HEUPORT 81					96093	3490	106250	116515	3404	7153			332905

Appendix C-2. 14
TOTAL SALMON POUNDS (ROUND) LANDED BY THE TROU FISHERY IH PACIFIC CITY

SPECIES. PORT......... YR	JAN	FED	AAR	APR	MAY	JUN	JHL	AUG	SEPT	061	NOV	DEC	TOTAL.
CHIMOOR PACIFIC CITY 52			0	0	0	0	250	33	128	0			404
C ${ }^{\text {PryOOK PACIFIC CITY } 53}$			0	0	0	0	47	100	0	0			147
[SOK PACIFIC CITY 54			0	0	0	25	948	506	0	0			1479
CHINOOX PACIFIC CITY 55			0	0	0	121	1526	457	399	0			2503
CHINOOK PACIFIC CITY 56				0	25	512	4383	9782	204	14			14920
CHINOOK PACIFIC CITY 57				0	0	867	2364	576	1349	79			5235
CHINOOK PACIFIC CITY 58				0	43	56	6358	5987	2001	0			14445
CHIMOOK PACIFIC CITY 59				0	114	1042	1523	3039	263	139			6120
CHIMDOK PACIFIC CITY 60				0	90	395	1129	669	1001	0			3284
CHINOOK PACIFIC CITY 61				0	0	91	870	1144	376	38			2519
CHINOOK PACIFIC CITY 62				0	0	0	95	431	695	0			1221
CHINOOK PACIFIC CITY 63				0	0	42	253	547	153	0			995
CHIMOOK PACIFIC CITY 64				0	0	41	442	1343	1823	0			3649
CHINOOK PACIFIC CITY 65				0	0	104	112	202	450	0			868
CHINDOK PACIFIC CITY 66				0	10	388	2482	2529	601	0			6010
CHIMOOK PACIFIC CITY 67				0	18	1153	1592	3467	1352	0			7582
CHINOOK PACIFIC CITY 68				0	0	1830	7085	11076	3804	5719			29514
CHINOOK PACIFIC CITY 69				0	20	2783	3168	6833	2857	1281			16942
CHBMODK PACIFIC CITY 70				494	524	7440	3456	5950	5169	940			23973
CHINOOK PACIFIC CITY 71				0	13	1173	2264	10939	3700	258			18347
CHINOOK PACIFIC CITY 72				0	115	3294	3650	11025	2292	245			20628
CHINOOK PACIFIC CITY 73				0	0	3134	10222	17704	5366	1837			38263
CHINOOK PACIFIC CJTY 74				0	0	4939	13744	8841	4030	935			32489
CHINOOK PACIFIC CITY 75				0	12	7636	13344	17782	850	0			39624
CHINOOK PACIFIC CITY 76					0	12224	12557	8819	680	486			34766
CHINOOK PACIFIC CITY 77					78	7134	34135	16432	2212	1381			61372
CHINOOK PACIFIC CITY 78					21	6590	13443	12503	979	950			34486
C. YOK PACIFIC CITY 79					20		4801	9534	99	48			14502
Chantok pacific city 80					32	183	3062	17939	2191	147			23554
CHIMOOK PACIFIC CITY 81					23		17440	13243	229	423			31358

PACIFIC CITY

SPECIES.0	PQRT........ YR	$J A M$	FEB	mar	APR	MAY	JM	Jul	alle	SEPT	OCT	NOV	DEC	TOTAL.
CHIMOOX	PORT ORFORD 52			0	0	0	30248	33141	105544	9438	0			178372
	PORT ORFORD 53			0	0	0	1209	20841	75662	405	0			98117
Ca JK	PORT ORFORD 54			0	0	0	1509	15621	111422	8240	0			136792
CHIMOOK	PORT ORFORD 55			0	0	0	21618	24662	50430	10384	0			107087
CHIMOOK	PORT ORFORD 56				0	31	4596	40752	97705	114	0			143198
CHINOOK	PORT ORFORD 57				0	141	10475	70796	118990	6446	0			236848
CHINCOK	PORT ORFORD 58				0	7465	85851	29234	6849	17497	1342			148238
Chimook	PORT ORFORD 59				0	139	11882	19496	2874	1539	314			36244
CHINOOK	PORT ORFORD 60				0	245	6787	22752	14589	9766	0			54139
CHINOOK	PORT ORFORD 61				0	0	133	1545	12335	1252	0			15265
CHIMOOK	PORT ORFORD 62				0	0	344	391	7431	814	0			8980
chinook	PORT ORFORD 63				0	139	6204	35862	60410	272	0			102887
CHIMOOK	PORT ORFORD 64				0	0	3933	18791	18686	2168	0			43578
CHIMOOK	PORT ORFORD 65				0	12	11512	12809	19608	61	0			44002
CHIMOOK	PORT ORFORD 66				0	0	2211	20370	43393	20794	0			86768
chindok	PORT ORFORD 67				0	307	4965	25993	21393	8643	0			61301
CHIMOOK	PORT ORFORD 68				37	160	2500	42794	23787	1250	183			70711
CHINOOK	PORT ORFORD 69				224	821	28348	34738	25014	1459	5408			96005
CHINOOK	PORT ORFORD 70				85	712	31327	32665	67210	45224	4062			181285
CHIMOOK	PORT ORFORD 71				0	1359	15890	1888	48670	143	9587			77537
CHINOOK	PORT ORFORD 72				0	1577	46657	30201	54946	27333	13419			174133
CHINOOK	PORT ORFORD 73				0	419	29046	104806	64686	32071	13575			244603
CHINOOK	PORT ORFORD 74				45	23	13763	36357	118698	16873	11288	12286	404	209737
CHINOOK	PORT ORFORD 75				22	46	24409	68363	115293	228468	8568	6929	283	452381
CHINOOK	PORT ORFORD 76					185	7259	22841	58002	56953	11165	14351		170756
CHINOOK	PORT ORFORD 77					17	22648	121108	83066	71877	20564	38012		357292
CHINOOK	PORT ORFORD 78					114	54768	45305	38772	26805	33509	25943		225216
$C^{\prime} \quad$ OK	PORT ORFORD 79					0		41516	103402	5858	18512	17662		186950
Chas ${ }^{\text {chek }}$	PORT ORFORD 80					8507	32539	56481	149912	23460	12851	6443		290193
CHIMOOK	PORT ORFORD 81					7417		25514	66684	11548	8471	5515		125149

PORT ORFORD

SPECIES.0	PORT........ YR	JAN	FEB	MAR	APR	may	JUN	Jth	AUG	SEPT	OCT	Nov	DEC	TOTAL.
CHINOCK	STUSLAE BAY 52			0	0	384	19642	35521	61444	333	38			117362
cra'mok	şuslab bay 53			0	0	0	6436	34493	57517	13509	0			111955
C... . DK	SIUSLAH BAY 54			0	0	1002	14950	42181	68204	45198	7514			179049
chinook	SIUSLAH BAY 55			0	0	2418	16355	6741	65944	17088	0			108539
CHINOOK	SIUSLAH Bay 56				0	10663	20292	98647	35704	2002	0			167308
CHINOOK	SIUSLAK BAY 57				0	5580	32272	40948	26514	4301	31			109846
CHINOOK	SIUSLAM BAY 58				0	3789	6945	20704	16489	7799	0			55726
CHINOOK	SIUSLAH BAY 59				0	5122	13308	2307	2117	1249	56			24159
CHIMOOK	SIUSLA BAY 60				3880	15782	8323	22997	12863	1917	37			65799
CHINOOK	SIUULAUY BAY 61				89	0	7423	45490	8185	9853	1719			72759
CHINOOK	SIUSLAH BAY 62				827	758	26015	41996	7561	3639	257			81053
CHINOOK	SIUSLAH bay 63				583	1167	46429	107747	89662	2509	0			248097
CHINOOK	SIUSLA BAY 64				0	924	12808	22657	12398	273	110			49170
CHINOOK	SIUSLAH bay 65				154	17874	8201	5437	3474	1038	0			35978
CHINOOK	SIUSLAH BAY 66				0	431	16369	6002	8926	567	0			32295
CHINOOK	SIUSLAK BAY 67				0	0	523	2453	551	10	0			3537
CHINOOK	SIUSLAH BAY 68				0	543	1768	772	867	37	0			3987
CHINOOK	SIUSLAH Bay 69				0	0	422	246	289	90	0			1047
CHINOOK	siuslay bay 70				0	0	1175	698	3741	0	0			5614
CHINOOK	SIUSLAU BAY 71				0	0	427	1671	3230	1571	0			6899
CHINOOK	SIUSLAU BAY 72				0	0	5448	3897	504	68	0			9910
CHINOOK	SIUSLAH BAY 73				,	0	1477	23452	29734	1272	714			56649
CHINOOK	SIUSLAH BAY 74				0	61	352	8018	6486	594	192			15703
CHINOOK	SIuslall bay 75				0	0	7766	30786	31383	3213	0			73148
CHINOOK	SIUSLAU Bay 76					155	4794	9793	14603	107	464			29916
CHINOOK	SIUSLALG BAY 77					23	1473	17431	8826	2091	0			29844
CHINOOK	SIUSLAK BAY 78					6	7564	12927	2897	4457	,			27851
- DOK	gIUSLAH BAY 79					2042	11	31539	26174	276	13			60058
Chan 00 K	SIUSLAAH BAY 80					16301	5994	17356	8256	1255	41			49203
CHINOOK	SIUSLA日 BAY 81					3856		20208	6448	0	45			30557

SPECIES.	ORT......... YR	JAN	FEB	HAR	APR	MAY	JUM	JUL.	AUG	SEPT	0 CT	NOU	DEC	POPAL.
CHINOON	HINCHESTER 52			0	0	60	7871	15299	15967	1220	59			40476
	HIMCHESTER 53			0	0	38	1553	5594	6833	1341	69			15428
C1.at00k	HINCHESTER 54			0	89	2557	13814	65597	17919	11771	1121			112868
CHINOOX	HINCHESTER 55			0	5332	91191	110294	89980	81023	14385	342			392547
CHINOOK	HIMCHESTER 56				4479	50623	107839	81445	144026	14433	582			403427
CHINOOK	HINCHESTER 57				257	27620	84938	48574	21421	5064	206			188080
CHINOOK	HIHCHESTER 58				131	12696	27468	17503	7546	2704	919			68967
CHINOOK	HINCHESTER 59				142	2543	4406	2386	1508	893	251			12129
CHINOOK	HINCHESTER 60				283	4411	1607	3448	13424	5425	477			29075
CHINOOK	HINCHESTER 61				69	818	2038	12169	33033	5940	548			54615
CHINOOX	WINCHESTER 62				138	458	4066	5914	9543	642	9			20770
CHINOOK	hinchester 63				13	950	9452	7112	6647	1012	0			25186
CHINOOK	HINCHESTER 64				0	649	1883	3441	6501	1520	0			13994
CHIMOOK	HINCHESTER 65				0	1930	3362	6169	0	0	0			11461
CHINOOK	HINCHESTER 66				0	378	3942	6587	3272	1978	31			16188
CHINOOK	HINCHESTER 67				770	535	2790	8604	3924	1128	63			17814
CHINOOK	HINCHESTER 68				161	3119	18864	18200	7037	883	0			48064
CHINOOK	HIMCHESTER 69				154	1324	19330	22244	11601	3311	0			57964
CHIMOOK	himchester 70				0	859	14442	16474	21707	2245	0			55727
CHINOOK	HNCHESTER 71				0	102	7333	4535	9866	4135	407			26378
CHINOOK	WINCHESTER 72				0	64	12393	18758	1373	4401	6273			43262
CHIMOOK	Hinchester 73				97	442	9223	96574	111382	7109	24182			249009
CHINOOK	HINCHESTER 74				0	430	4925	23549	14061	3342	296			46603
CHINOOK	hinchester 75				206	727	39837	37767	22845	14380	47			115809
CHINOOK	HIMCHESTER 76					4787	17470	31408	24321	2497	309			80792
CHINOOK	HINCHESTER 77					14532	12160	62290	79824	4225	1319			174350
CHTNOOK	HINCHESTER 78				170	1139	13720	\$0280	28795	1956	95			86155
1 jok	UINCHESTER 79					14145		67795	41422	1836	1127			126325
CHINOOK	HINCHESTER 80					8707	33582	51508	18467	11724	360			124348
CHINOOK	HINCHESTER 81					1475		30776	10270	719	69			43309

HINCHESTER
total salmon pounds (round) lamded by the troll fishery in miscellaneclls pcrits

SPECIES..	YR	JAH	FEB	mar	APR	may	HN	H	aUl	SEPT	OCY	NOU	DEC	TOPAL.
CHIMOAK	minc.	49			0	3370	12017	14929	70532	142826		891	0		260411
- Y¢0K	misc.	50			22	13	13	10891	19835	100771	16396	3168			151109
Lu..ct00K		51			0	2185	6427	40818	258770	82219	65602	542			456563
CHIMOOX		52					0	0	0	0	0				0
CHINOOK		53					0	0	0	0	0				0
CHIMOOK		54					0	0	0	0	0				0
CHINCOK		55					0	0	0	0	0				0
CHimook		56					0	0	0	0	0				0
Chimook		57					0	0	0	0	0				0
Chimoak		58					0	0	0	0	0				0 884
chintook		59					10	166	28	14	66				284
CHINOLK		60					8	28	15	64	229	49			393
CHIMOOK		61							142	0	85				227
CHINOOK		62				54	9	42	65	181	35	19			405
CHINOOK		63				7	3321	300	67	82					3777
CHIMOOK		64					27	77	182	294	234	7			821
CHINOOK		65					174		171	227	165.	89			826
CHINOOK		68							39	2864					2903

a/ Preliminary from 1979 for California; from 1979 for Washington, and from 1981 for Oregon.
b/ Includes catches from California. 'لashington, and Alaska landed in Oregon.
c/ Includes catches from California. Uregon, and Alaska landed in Washlington.

Sport catch of spring chinook salmon in Oregon coastal streams, 1970-79.a,b (Berry 1981).

Stream	1970	Run Year								
		1971	1972	1973	1974	1975	1976	1977	1978	1979
Coastal Tributaries										
Alsea River \& Bay	35	30	10	5	11	17	7	25	4	8
Alsea River, N.F.	--	--	--	--	--	--	--	6	4	13
Applegate River	--	--	--	--	--	--	--	--	0	3
Big Elk Creek	--	--	--	--	--	--	--	--	0	3
Coos River \& Bay	--	--	--	--	--	--	--	--	0	5
Coos River, S.F.	--	--	--	--	--	--	--	--	0	10
Coquille River \& Bay	--	--	--	--	--	--	--	-7	0	17
Illinois River	--	--	--	--	--	--	--	111	0	3
Kilchis River	8	43	3	19	16	29	22	48	94	22
Miami River	5	0	0	4	0	8	4	6	0	0
Nestucca River \& Bay	132	340	245	228	478	623	421	1,040	627	741
Nestucca River,Little	8	0	0	14	4	1	9	5	6	0
Rogue River	11,970	9,395	9,577	6,589	6,836	5,223	4,566	4,600	6,683	11,328
Salmon River	103	0	28	7	0	24	26	33	5	8
Siletz River \& Bay	56	89	39	15	118	100	94	237	47	58
Siletz River, N.F.	--	--	80	25	30	--	--	3	0	0
	673	10	389	25	39	0	0	0	0	0
Slick Rock Creek										
Tillamook Bay	75	51	29	29	40	0	45	122	334	396
Tillamook River	25	28	1	10	18	4	0	3	0	0
Trask River	416	1,150	190	828	1,182	1,149	1,980	2,510	2,101	1,541
Trask River, N.F.	--		--	--	--		--	6	12	0
Trask River, S.F.	12, --	$7{ }^{--}$	7--	--	--	--	--	-	9	6
Umpqua River	12,059	7,854	7,236	3,193	2,854	4,092	3,252	1,505	1,008	1,010
Umpqua River, N.F.	2,016	1,659	3,973	2,052	2,286	1,902	2,691	1,568	1,124	737
Umpqua River, S.F.	19	4	11	0	5	37	57	14	3	3
Wilson River	72	363	147	218	287	503	286	887	1,004	469
Yaquina River \& Bay	--	--	--	--	--	--	--	--	0	9
Unclassified	--	--	--	--	--	--	--	1,060	20	--
Total	27,672	21,016	21,878	13,236	14,174	13,712	13,460	13,789	13,088	16,390

[^1]AN ECONOMTC ASSESSMENT
OF THE COASTAL COMMUNITY IMPACTS OF INCREASING THE ABUNDANCE AND HARVEST OF CHINOOK SALMON IN THE OREGON OFFSHORE FISHERY

SUBMITTED TO THE OREGON COASTAL ZONE MANAGEMENT ASSOCTATTON, INC.
P.O. BOX 1033

313 SW 2ND, SUITE C
NEWPORT, OREGON 97365

BY
HANS RADTKE
FREELANCE ECONOMIST
YACHATS, OREGON
AUGUST, 1985

Page No.

Summary 1
Introduction. 1
Economic Analysis of Community Impacts of Salmon Management. 2
--Input/Output Models. 2
--Measuring the Importance of Local Economic Activity 3
Economic Assessment of Community Impacts. 4
Appendix. 16
The Oregon Salmon Commission contributed financially to the preparation of this report

The preparation of this report was financed by funds from the Economic Development Administration, U.S. Department of Commerce funds under Title IX, Section 903 of the Public Works and Economic Development Act of 1965, as amended (Grant No. 07-09-02791).

SUMMARY.
Any reprogramming or enhancement efforts should rely on sound biological, environmental and management factors. The purpose of this assessment is to show that such a program has the potential to have a positive economic effect on the Oregon coastal communities. No, specific recommendations for management policies are made with this assessment.

INTRODUCTION.
A review of current information available on the health of the Chinook Salmon in the Oregon offshore fisheryl was recently presented to the Oregon Coastal Zone Management Association, Inc. (OCZMA) by Hillary Egna and Jim Lannan.

The report contains a synthesis of available information on the status of the Oregon coastal chinook stocks and on the interaction of hatchery and native fish. The report considers the following: 1) contribution to the Oregon offshore fishery; 2) abundance; 3) distribution and disease problems of Oregon coastal chinook stocks. Genetic risks and carrying capacity limitations are evaluated qualitatively.

The report identifies several Oregon coastal chinook stocks that tend to contribute heavily to the Oregon offshore fishery. These are the Umpqua spring, the Rogue spring and fall, the Chetco fall and the Elk fall chinook. Of these, the Rogue and the Umpqua stocks have no history of disease problems that would limit their exposure.

The report also reviews important aspects of the coastal chinook resources

[^2]that need to be considered in future studies. It stresses that further study is needed before actual reprograming or enhancement programs are undertaken.

It is with this same cautious note that this economic assessment should be reviewed. This assessment depends a great deal on biological and physical relationships reported and assumed. It is stressed that many of these assumptions used in this assessment are preliminary. The results should only be used to identify programs for consideration in future management policies.

ECONOMIC ANALYSIS OF COMMUNITY IMPACTS OF SALMON MANAGEMENT.

People interested in economic stability or economic development in coastal communities are often interested in estimating the impacts of economic changes (such as plant openings or closings), changes in available timber or fish for harvest, etc.) or to forecast population, employment, business activity or public service demands.
--INPUT/OUTPUT (I/O) MODELS.
Economic input/output (I/0) models are often used to estimate the impact of resource changes or to calculate the contributions of an industry to the local econony. The basic premise of the I/O framework is that each industry sells its output to other industries and final consumers and in turn purchases goods and services from other industries and primary factors of production. Therefore, the economic performance of each industry can be determined by changes in final demand and the specific inter-industry relationships.

Input/Output models can be constructed using surveys of a regional economy (a method that is very expensive) or by using secondary data to construct
estimates of local economic activity. ${ }^{2}$
The model developed for use in this assessment utilizes one of the best known secondary I/O models available. The U.S. Forest Service has developed a computer program called IMPLAN which can be used to construct county or multi-county I / O models for any region in the U.S. The regional I/O models used by the U.S. Forest Service are derived from technical coefficients of a national I/O model and localized estimates of total gross outputs by sections. The computer program (IMPLAN) adjusts the national level data to fit the economic composition and estimated trade balance of a chosen region. Input/output models have been constructed for Clatsop, Tillamook, Lincoln, Coos and Curry counties with the use of the U.S. Forest Service IMPLAN ${ }^{3}$ model.
--MEASURING THE IMPORTANCE OF LOCAL ECONOMIC ACTIVITY. One way of measuring the importance of a particular economic activity is to look at the amount of goods and services it sells and buys outside the local economy. A local community has exports and imports just as the United States has exports and imports. Harvesting and processing fish locally and selling fillets to Portland or Los Angeles residents are an export; so are lodging and services purchased by the recreational fishermen. Although a recreationalist (tourist) comes into the county, the goods and services he purchases are paid for with dollars he earned somewhere
${ }^{2}$ For a detailed discussion of these methods and the methodology used in estimating local impacts see: Radtke, Hans D. and Jensen, William--"Fisheries Economic Assessment Model". West Coast Fisheries Development Foundation, Draft Report; Portland, Oregon; July 1985.
3^{3} Siverts, Eric; Palmer, Charles and Walters, Ken---"IMPLAN Users Guide", U.S. Forest Service; Fort Collins, Colorado; September 1983.
outside the local area. All exports bring outside dollars into the economy, stimulating the local economic growth.

To estimate the initial economic change a salmon made available for harvest can bring into the commercial or the recreational sector of the local area, representative budgets for fish harvesting, processing and recreational fishing are used. 4

The individual expenditure categories of these industries are used to estimate the total community income impacts for several Oregon communities of each dollar of harvested salmon revenue (Table I); each processed salmon pound (Table II); and each recreation day (Tables III and IV). These impacts are summarized in Tables V and VI.

The impacts per commercial fish harvested and per recreation day are used to assess the impacts of increasing the abundance and harvest of chinook salmon in the Oregon offshore fishery.

ECONOMIC ASSESSMENT OF COMMUNITY IMPACTS.

Egna and Lannan identified several stocks of chinook that tend to contribute heavily to the Oregon offshore fishery and that are also apparently free from diseases and therefore not quarantined. These stocks are the Umpqua and Rogue spring chinook and the Rogue and Coos fall chinook.

Figures 1, 2, and 3 diagram the contribution to the coastal areas of several stocks of chinook salmon originating from Oregon waters. Figure 1 a1so shows that about 15% of the Oregon chinook harvested are sport caught. This information along with the information in Tables V and VI is used to
${ }^{4}$ For an explanation see: "Progress Report on the Economic Aspects of the Recreational/Commercial Allocation of the Coho Salmon in the Ocean Fisheries". For Commission Review. Oregon Department of Fish and Wildlife; Portland, Oregon; August 23, 1985.
calculate the community impacts on the Oregon coastal communities of average fish harvested. For example, for every Umpqua spring chinook made available for the offshore fishery ${ }^{5}$, the Oregon coastal communities will receive $\$ 20.12$ of local income. On the other hand, a Trask fall chinook made available to the offshore fishery will contribute $\$.16$ to Oregon coastal communities income (Table VII). This analysis does not include price differentials between types of Chinook. Columbia "Tules" historically bring a lower price than the average $\$ 2.74$ per pound of chinook used. Inclusion of such specific price information would reduce the estimates for Columbia "Tules".

Total catch rates per smolt released are very critical in the total impact of a stock on coastal communities. Notes from Bob Garrison, Oregon Department of Fish and Wildife show that such rates can vary a great deal from stock-to-stock (Appendix) and from year-to-year. The contribution to the coastal communities (in terms of income and jobs) can be very significant, especially at the higher survival rates (Table VII). A ten million smolt release of Umpqua spring chinook that contributed to the offshore fishery in the same manner as postulated in this assessment model could increase Oregon coastal community income by $\$ 201,200$ and total ful1-time equivalent employment by 11 jobs at a 1 percent survival rate and up to $\$ 1,006,000$ income and by 56 jobs at a very high survival rate of 5 percent.

The estimates in Table VII of local impacts are an assessment of possible management decisions relating to increasing or reprogramming the abundance or harvest of chinook salmon. The factors in this assessment are very general and should be read with caution in any specific situation.
5^{5} Inland harvest not included.

Table I.
Calculations to Estimate the Local Commity Impacts of Expenditures of Commercial Salmon harvested per $\$$ of Revenue in Areas of the Oregon Coast

Iotal Local Impact Per of Harvesting Revenues

Initial change in return to households (Cres dues, etc.)		Impact of Expenditures					Local Impact per Harvest Dollar				
		Astoria	Tillamook	Newport	Coos Bay	Brookings	Astoria	Tillamok	Nempert	Coos Bay	Brookings
. 624	+	. 625	. 505	. 499	. 560	. 413	$=1.25$	1.13	1.12	1.18	1.04

a Short terli policy or resource changes analysis includes variable expenses and net returns (in a stagnant industry it is assumed that all revenues that would otherwise go toward interest payments and depreciation become part of household income)
b For an explanation of the Sullivan Method (see Siverts, et. al.)
c Estimated with the U.S. Forest Service IMPLAN Input/Output model for these areas of the oregon Coast

Calculations to Estimate the Local Community Income Impacts of Commercial Salmon (Per Pound) Processed in Areas of the Oregon Coast

Variable expenses ${ }^{\text {a }}$	Expenditures per Processed	IMPLAN Coefficients b					Total Income Impact Per Pound (\$)				
	Pound	Astoria	Tillamook	Newport	Coos Bay	Brookings	Astoria	Tillamook	Newport Coos Bay		Brookings
Labor	\$.16	. 6229	. 4919	. 4893	. 5602	. 4007	. 100	. 079	. 079	. 090	. 064
Other:											
Utilities	. 03	1.0161	. 7865	. 8518	. 8930	. 7392	. 030	. 024	. 026	. 027	. 022
Packaging	. 02	. 1060	. 1032	. 0969	. 0891	. 0791	. 002	. 002	. 002	. 002	. 002
Miscellaneous	. 01	1.0415	. 9779	1.0561	1.1092	. 9372	. 010	. 010	. 011	. 011	. 009
Total	. $22^{\text {a }}$. 142	. 115	. 118	. 130	. 097

Total Local Impact Per \$ of Harvesting Revenues

a Short term or resource changes analysis includes variable expenses only. For processors, the margin per pound between the purchased price and sales price remains fairly constant (about $\$.52$ per lb. including yield percentages). A fairly large portion of the margin ($\$.30$ of the $\$.52$) includes fixed cost and will not change when annual policy changes are made.
b Estimated with the USFS IMPLAN Input/Output model for these areas of the oregon coast.

Table III.
Calculations to Estimate the Local Community Income Impacts of The Recreational Ocean Fishery in $\$$ per Recreation Day for Private Boats in Areas of the Oregon Coast

a Basic data taken from Crutchfield and Schelle (1979).
Expenditure data is adjusted to 1984 dollars using the GNP price deflator.
b Estimated with the U.S. Forest Service Input/Output model for these areas of the Oregon Coast.

Calculations to Estimate the Local Commuity Income Impacts of The Recreational Fishery for Ocean Salmon Charter Boats in Areas of the Oregon Coast.

a Basic data taken from Crutchfield and Schelle (1979)
b Moorage of 1.4%; insurance of 4.18 taxes, fees etc. of 7.58 are considered fixed costs.

Table V.
Economic (Income) Impacts of Ocean Salmon Commercial Fishing
(Impacts Related to Policy Decision) Commercial Impacts (Inpacts on Local Household Income

	Astoria	Tillamook	Newport	Coos Bay	Brookings
Harvester impacts per dollar	\$1.25	\$1.13	\$1.12	\$1.18	\$1.04
Processor impacts per pound	0.29	0.26	0.27	0.28	0.24
Examples (Harvester \& processor impacts per fish) Average Weights Used					
Chinook	8.5	8.5	8.5	8.5	8.5
Coho	5.1	5.1	5.1	5.1	5.1
Average Prices Used (\$)					
Chinook	2.74	2.74	2.74	2.74	2.74
Coho	1.66	1.66	¢. 66	1.66	1.66

Chinook	31.68	28.53	28.38	29.86	26.43
Coho	12.06	10.90	10.86	11.42	10.08

Economic (Income) Impacts of Ocean Salmon Recreational Fishing (Private and Charter Boat) per Angler Day Destination Impacts

(Impacts Related to Policy Decision)					
	Astoria	Tillamod	Lincoln	Coos Bay	Brookings
Destination expenditures (\$)					
Private Boats	45.92	45.92	45.92	45.92	45.92
Charter Boats	56.23	56.23	56.23	56.23	56.23
Impacts on Household Income (\$)					
Private Boats	40.41	36.52	36.52	39.34	34.97
Charter Boats	63.74	59.12	59.16	63.99	55.52

Table VII.

OFFSHORE OREGON SALMON HARVEST--LOCAL INCOME TMPACTS RELATED TO REPROGRAMMING OR ENHANCEMENT PROGRAMS

Stock	Oregon offshore Catch ${ }^{1}$ \%	```Community Impact Per Fish2 $```	Average Impact Per Fish \$	Per Million Smolts Released--Survival Rates							
					$\begin{aligned} & 1 / 2 \% \\ & \text { Jobs } 3 \end{aligned}$	Mediu $\$$	$\begin{aligned} & \text { a } 1 \% \\ & \text { Jobs } \end{aligned}$	${ }_{\$}^{\text {Hig }}$	$\begin{aligned} & 2 \% \\ & \text { Jobs } 3 \end{aligned}$		High 5% Jobs
SPRING CHINOOK											
Umpqua	62	32.45	20.12	106,000	5.59	201,000	11.18	402,400	22.36	1,006,000	55.89
Rogue	38	32.45	12.33	61,650	3.49	123,300	6.85	246,600	13.70	616,500	34.25
Trask	13	32.45	4.22	21,100	1.18	42,200	2.34	84,400	4.70	211,000	11.75
Willamette	1	32.45	. 32	1,600	. 09	3,200	. 18	6,400	. 36	16,000	. 90
FALL CHINOOK											
Rogue	46	32.45	14.93	74,650	4.15	149,300	8.29	248,600	16.58	746,500	41.45
Coos	15	32.45	4.87	24,850	1.36	48,700	2.71	99,400	5.42	248,500	13.55
Trask	1/2	32.45	. 16	800	. 05	1,600	. 09	3,200	. 18	8,000	. 45
Salmon River	1	32.45	. 32	1,600	. 09	3,200	. 18	6,400	. 36	16,000	. 90
Columbia "Tules" (Big Creek)	8	32.45	2.60	13,000	. 72	26,000	1.44	52,000	2.88	130,000	7.20

$1_{\text {Taken }}$ from Figure I.

$2_{\text {Used }}$ the Newport area as a representative impact for the total Oregon Coast (from Tables V and VI). The rates of ocean troll to ocean recreation (85% to 15%) and recreation private boat to charter boat (84% to 16%) are used to calculate the impact per average fish harvested.
$3_{\text {Assumed }}$ an $\$ 18,000$ annual income is equal to one full-time job.

1982 Oregon Chinook Catch

Troll	222,548	85.2%	\square
Sport	38,729	14.8%	
Total	261,548		

Figure 2.

Rogue Spring Chinook

APPENDIX

NOTES FROM

BOB GARRISON

OREGON DEPARTMENT OF FISH AND WILDLIFE

NOTES FROM BOB GARRISON, OREGON DEPARTMENT OF FISH AND WILDLIFE

ROGUE CHINOOK SPRING

Br	CWT Number	Date	Size/Lb.	Total Catch Rate	\#/1,000 Contribution to Oregon	
					Sport	Tro11
75	09-04-04	12-15-76	11.1	1.24\%	0.05	2.6
75	09-03-15	12-15-76	5.4	0.51\%	0.06	1.3
75	09-04-01	10-13-76	10.9	0.91\%	0.38	3.6
75	09-04-02	10-13-76	5.3	1.79\%	0.35	4.9
76	09-16-16	12-13-77	9.5	1.18	0.00	5.4
76	09-16-18	12-13-77	6.7	1.22\%	0.12	4.9
76	09-16-19	12-13-77	6.2	1.59\%	0.11	6.6
76	09-16-33	10-18-77	10.3	3.47\%	0.35	18.4
76	09-16-20	10-18-77	8.0	4.77\%	0.18	21.2
76	09-16-17	10-18-77	5.6	7.53\%	0.28	26.7
77	07-16-29	10-25-78	6.4	0.78\%	0.00	5.5
77	07-16-39	3-14-79	7.3	0.13\%	0.00	0.1
78	07-19-38	12-17-79	10.2	0.43\%	0.00	3.0
78	07-19-37	12-17-79	10.3	0.33\%	0.00	1.8
78	07-19-36	12-20-79	7.8	0.86\%	0.00	4.1
78	07-19-35	12-20-79	7.6	1.04\%	0.10	4.7
78	07-19-34	10-21-79	12.2	0.42\%	0.00	2.4
78	07-19-33	10-21-79	11.5	0.48\%	0.00	2.2
78	07-19-31	10-21-79	6.7	1.85\%	0.00	5.2
78	07-19-32	10-21-79	6.7	1.62\%	0.00	4.8
78	07-18-54	3-01-80	6.8	1.90\%	0.53	8.2
79	07-22-14	12-12-80	10.8 (BKD)	0.20\%	0.50	0.7
79	07-22-13	12-12-80	9.9	0.43\%	0.22	1.9
79	07-22-11	12-12-80	7.4	0.11\%	0.00	0.4
79	07-22-12	12-12-80	7.7	0.35\%	0.06	2.0
79	07-22-09	10-16-80	9.5	0.87\%	0.28	3.5
79	07-22-10	10-16-80	9.5	0.44\%	0.00	2.0
79	07-22-15	10-16-80	8.4	0.51\%	0.18	2.4
79	07-22-16	10-16-80	7.6	0.23\%	0.00	1.4
79	07-22-31	3-02-81	5.8	0.33\%	0.02	1.6
80	07-25-14	8-14-81	9.2	0.38\%	0.90	1.0
80	07-25-15	10-21-81	5.3	0.13\%	0.29	0.5
80	07-20-23	3-15-82	4.4	0.12\%	0.43	0.2

NOTES FROM BOB GARRISON, OREGON DEPARTMENT OF FISH AND WILDLIFE

ROGUE CHINOOK FALL						
Br		Date	Size/Lb.	Tota1 Catch Rate	\#/1,000 Contribution to Oregon	
	CWT Number				Sport	Troll
77	$\begin{aligned} & \text { 07-16-36 } \\ & \quad \text { (Applegat } \end{aligned}$	$\begin{aligned} & 10-25-78 \\ & \text { ock) } \end{aligned}$	11.8	0.26\%	0.00	0.8
78	07-18-53	10-25-79	7.3	1.77\%	0.50	8.2
80	$\begin{aligned} & \text { 02-17-09 } \\ & \quad \text { (Lobster } \end{aligned}$	$\begin{aligned} & \text { 9-24-81 } \\ & \text { Stock) } \end{aligned}$	10.1	0.46\%	0.98	1.8

UMPQUA CHINOOK SPRING

76	$09-16-41$	$3-07-78$	4.8	0.69%	0.03	3.3
76	$09-16-55$	$3-07-78$	5.0	0.52%	0.50	2.0
77	$07-16-49$	$3-01-79$	5.1	1.95%	0.60	14.6
77	$07-16-50$	$11-21-78$	5.8	2.06%	0.40	11.9
78	$07-20-03$	$11-07-79$	$8.6(\mathrm{SICK})$	0.19%	0.00	0.8
79	$07-22-29$	$2-26-81$	4.0	2.06%	1.23	11.3
79	$07-22-28$	$10-28-80$	4.0	1.88%	1.31	6.6
80	$07-25-01$	$3-12-81$	5.5	0.72%	0.94	3.4
80	$07-25-02$	$07-26-18$	$3-22-82$	$4-01-82$	4.9	0.65%
81	$07-26-19$		0.17%	0.80	2.8	
81			0.37%	1.67	0.7	

```
1,
|
|
\[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \square \\
& 1 \\
& \begin{array}{l}
14 \\
1
\end{array} \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \begin{array}{l}
18 \\
18 \\
1
\end{array} \\
& \begin{array}{l}
1 \\
\square
\end{array} \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\]```


[^0]:    The preparation of this report was financed by funds from the Ecomomic Development Administrationn U. S. Department of Commerce fumds under Titie IX, Sewtion gos of the Fublic Worts and Economic Development Act of 1965, as amended (Grant No. 07moy-92791).

[^1]:    

[^2]:    ${ }^{1}$ Egna, Hillary S. and Lannan, James E.---"A Preliminary Feasibility Review of Increasing the Abundance and Harvest of Chinook Salmon in the Oregon Offshore Fishery." Report prepared for the Oregon Coastal Zone Management Association, Inc. (OCZMA); Newport, Oregon; July, 1985.

